
Springer Theses
Recognizing Outstanding Ph.D. Research

   

Classical Pendulum 
Feels Quantum 
Back-Action

Nobuyuki Matsumoto

Springer Theses
Recognizing Outstanding Ph.D. Research



Springer Theses

Recognizing Outstanding Ph.D. Research



Aims and Scope

The series “Springer Theses” brings together a selection of the very best Ph.D.
theses from around the world and across the physical sciences. Nominated and
endorsed by two recognized specialists, each published volume has been selected
for its scientific excellence and the high impact of its contents for the pertinent field
of research. For greater accessibility to non-specialists, the published versions
include an extended introduction, as well as a foreword by the student’s supervisor
explaining the special relevance of the work for the field. As a whole, the series will
provide a valuable resource both for newcomers to the research fields described,
and for other scientists seeking detailed background information on special
questions. Finally, it provides an accredited documentation of the valuable
contributions made by today’s younger generation of scientists.

Theses are accepted into the series by invited nomination only
and must fulfill all of the following criteria

• They must be written in good English.
• The topic should fall within the confines of Chemistry, Physics, Earth Sciences,

Engineering and related interdisciplinary fields such as Materials, Nanoscience,
Chemical Engineering, Complex Systems and Biophysics.

• The work reported in the thesis must represent a significant scientific advance.
• If the thesis includes previously published material, permission to reproduce this

must be gained from the respective copyright holder.
• They must have been examined and passed during the 12 months prior to

nomination.
• Each thesis should include a foreword by the supervisor outlining the signifi-

cance of its content.
• The theses should have a clearly defined structure including an introduction

accessible to scientists not expert in that particular field.

More information about this series at http://www.springer.com/series/8790

http://www.springer.com/series/8790


Nobuyuki Matsumoto

Classical Pendulum Feels
Quantum Back-Action
Doctoral Thesis accepted by
The University of Tokyo, Tokyo, Japan

123



Author
Dr. Nobuyuki Matsumoto
Department of Physics
The University of Tokyo
Tokyo
Japan

Supervisor
Assoc. Prof. Masaki Ando
The University of Tokyo
Tokyo
Japan

ISSN 2190-5053 ISSN 2190-5061 (electronic)
Springer Theses
ISBN 978-4-431-55880-4 ISBN 978-4-431-55882-8 (eBook)
DOI 10.1007/978-4-431-55882-8

Library of Congress Control Number: 2015957122

© Springer Japan 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer Japan KK



Parts of this thesis have been published in the following journal articles:

• Matsumoto, N., Michimura, Y., Aso, Y., & Tsubono, K. Optically trapped
mirror for reaching the standard quantum limit. Opt. Express 22, 12915 (2014).

• Matsumoto, N., Komori, K., Michimura, Y., Hayase, G., Aso, Y., & Tsubono,
K. 5-mg suspended mirror driven by measurement-induced backaction. Phys.
Rev. A 92, 033825 (2015).



Supervisor’s Foreword

By using the interactions between optical radiation and mechanical motion, it is
possible to explore and to manipulate the quantum behavior of a macroscopic
object. This Ph.D. thesis by Nobuyuki Matsumoto takes a significant step in this
newly emerging research field, called Optomechanics, by experiments with a tri-
angular optical cavity with a mirror with 5 mg mass.

One of the main motivations for this thesis was to take the first step to test
quantum mechanics on a macroscopic scale. Although quantum mechanics is
successful in explaining physics on a microscopic scale, its validity on the
macroscopic scale is still being debated. An issue of quantum decoherence, the
transition from the microscopic quantum world to the macroscopic “classical”
world, is not clearly solved. To test it experimentally, a macroscopic system, in
which any classical noise contributions are well suppressed, is required.

Another motivation for this thesis was to obtain knowledge to improve the
sensitivity of precision measurement such as with gravitational-wave antennae.
With extremely high transmissivity, observation of gravitational waves will give us
new insights into the astrophysical phenomena and the birth and history of the
universe itself. Sensitivity of laser interferometric gravitational-wave antennae
under construction now will be limited by optical quantum fluctuations. Although
several schemes to reduce optical quantum noises are being proposed, they have not
been tested experimentally because of the difficulty in developing a prototype
interferometer with a sensitivity limited only by optical quantum noises.

The key step for these investigations is a direct observation of quantum
back-action (quantum radiation pressure fluctuation) of a laser beam acting on a
suspended macroscopic mirror. For that purpose, several groups have been trying to
develop an optical cavity with high circulating laser power comprising a tiny mirror
to enhance the back-action effect. However, high intra-cavity power and a
low-noise mirror cannot be achieved simultaneously in a straightforward manner
because of an effect called Siddles–Sigg instability (see the thesis for details).

Dr. Matsumoto came up with the idea that this problem could be solved by using
a triangular optical cavity and developed an experimental setup based on that
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concept. In addition, he implemented several state-of-the-art precision measure-
ments so as to stabilize the cavity and to avoid various kinds of noises: an optical
spring by an additional laser beam, suspension with low-mechanical loss to reduce
thermal noise, vibration isolation stages to reduce seismic noise, and others. As a
result, Dr. Matsumoto successfully realized an experimental setup in which the
quantum back-action level is 1.4 times larger than suspension thermal fluctuation.

This was the first time to achieve suppression of thermal fluctuation below the
optical quantum radiation pressure fluctuation in a macroscopic scale of 5 mg mass.
I hope readers will grasp the idea and experimental schemes and will enjoy them.

Tokyo, Japan Assoc. Prof. Masaki Ando
August 2015
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Chapter 1
Introduction

Abstract In recent years, significant improvements in optical and mechanical
elements have led to the development of the field of optomechanics, where mechani-
cal oscillators couple optical fields via the radiation pressure of light. In this chapter,
we provide a short history of study about optomechanical effects, and explain briefly
about a part of optomechanical effects, e.g., cavity-assisted cooling, instability, mea-
surement limit for continuous measurement, ponderomotive squeezing, and entan-
glement. Especially, the measurement limit for continuous measurement is explained
in detail, because the quantum back-action was inferred from the noise analysis in
our estimation. This chapter presents the historical and physical background of this
research.

Keywords Optomechanics · Quantum back-action · Measurement limit ·
Continuous measurement

1.1 Optomechanical Effects

Light has momentum, and thus can exert pressure on objects through the exchange
of momentum between the light and the objects. These forces were hypothesized by
Johannes Kepler in the 17th century, on the basis of the fact that dust tails of comets
pointed away from the Sun during a comet transit [1]. James Clerk Maxwell theoret-
ically predicted radiation pressure by his Maxwell’s equations in 1873. On the other
hand, Adolfo Giuseppe Bartoli predicted the same result as Maxwell based on the
second law of the thermodynamics in 1876 [2]. The first experimental demonstration
of the stationary pressure of light was made by Peter Lebedew in 1901, by using
a torsional balance, which was set in the vacuum tank (∼10−2 Pa) to eliminate the
radiometer effect [3]. In 1903, Ernest Nichols and Gordon Hull also conducted a
similar, but advanced in terms of mitigating the radiometer effect, experiment [4].1

1This experiment was introduced in the novel entitled as “Sanshirō”, which was written by the
Japanese famous writer Natsume Sōseki in 1908. In the novel, Nonomiya-sensei performed the
Nichols’s experiment in the basement of the University of Tokyo. Our experiment was also per-
formed in the basement of the University of Tokyo to measure the pressure of light, similarly to that
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2 1 Introduction

They improved the setup by increasing reflectance of the torsional balance’s surface
(Ag coating) in order to increase the pressure of light acting on the torsion balance,
and tuned pressure inside the tank (∼2 kPa) such that the direction of the force due
to the radiometer effect added to both arms of a torsional balance becomes opposite
(and they are canceled each other). In 1909, Albert Einstein derived the statistics of
the radiation pressure force fluctuations imposed on a movable mirror including the
“radiation friction” [5]. From this analysis, he revealed the dual wave-particle nature
of blackbody radiation.

Since then, various types of optomechanical effects have been both theoretically
and experimentally explored using various types of optomechanical devices. Exam-
ples are given below.

• Cooling
The cooling of an object by a laser is one of the most attractive features of optome-
chanics. This cooling effect mainly occurs due to the frictional (damping) force of
light. Because a laser field is almost in its ground state (e.g., infrared optical field
having an effective temperature of about 15,000 K), this damping force reduces
the velocity of the object without introducing other thermal fluctuating forces (i.e.,
this effect is similar to “cold” damping described in Ref. [6]). As a result, the object
is effectively cooled. This effect can also be understandable by scattering picture,
as shown in the caption of Fig. 1.1.
So far, the cooling method has been widely used from atom-scale to kg-scale
objects, partially for trapping [7–9], achieving the ground state [10–12] and elim-
inating technical limitations [13–16]. Another aspect of the cooling is the optical
spring effect [17–21], which not only changes the damping constant of the mechan-
ical system, but it also changes the spring constant. This effect is certainly useful
for examining the quantum behavior of mechanical oscillators free from external
control, see also in Sect. 2.2.2.

• Instability
The first cavity optomechanical experiment demonstrated bistability induced by
the radiation-pressure force acting on a macroscopic mirror in the optical domain
[22]. Since then, various types of instability, such as parametric instability [23,
24], have been reported. In our case, overcoming an optical anti-torsional effect
(so-called Siddles-Sigg instability [25, 26]) was one of two technical features in
the experiment. We realized it by an optical torsional spring effect in a triangular
cavity, which was independently shown by Daniel Sigg and myself, see also in
Chap. 4.

• Measurement limit
Braginsky represented the fundamental consequences of the Heisenberg uncer-
tainty principle (HUP) [27], and demonstrated that it imposes a limit on any force
measurement since the 1960s [28, 29]. This fundamental quantum limit for the
measurement sensitivity is called the standard quantum limit (SQL). SQL is the

(Footnote 1 continued)
written in Sanshirō. The difference is that Nonomiya-sensei’s target was the stationary pressure of
the light but our target was the fluctuated pressure of the light.
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1.1 Optomechanical Effects 3

sum of components derived from the quantization of light, and of a mechanical
oscillator, which lead to the generation of inevitable fluctuation, called vacuum
fluctuation of the light and zero-point fluctuation of the oscillator, respectively
(details are described in the next subsection). SQL applies universally to all devices
that use a mechanical oscillator as a probe mass.
To overcome this limit, various types of techniques, such as input-squeezing [30–
32], modification of the dynamics of the mechanical oscillator by an optical spring
[33–35] and the measurement of a conserved dynamical quantity of the mechanical
oscillator [36, 37], have been proposed. Today, all of them, which can overcome
the SQL imposed on the free mass (so-called free-mass SQL) within a certain
frequency range, are called QND (quantum nondemolition) measurements [38].
The QND measurement is a stronger necessary condition than the observation
of quantum back-action for the generation of macroscopic entanglement states in
laser interferometer [39].

• Squeezing
When an oscillator is fluctuated by quantum radiation pressure fluctuation (i.e.,
observation of quantum back-action), a quadrature variance of the light is squeezed
due to self-phase modulation, like that of Kerr squeezing in fibers [40, 41]. This
effect is called ponderomotive squeezing, and has been observed using cold atoms
[42], a NEMS oscillator [43] and a MEMS oscillator [14] after the observation
of quantum back-action. Ponderomotive squeeing has a key to perform the QND
measurement, see also in Sect. 3.1.1.

• Entanglement
Entanglement is a physical phenomenon in which multiple subsystems can only
be described with reference to each other. In other words, entanglement can be
considered as to be correlations between small quantum fluctuations around a car-
rier field in the frequency domain [44]. Entanglement is at the heart of physical
investigations not just because of its critical role in marking the boundary between
classical and quantum world, but also because of its key role for realizing quantum
information processing.
Optomechanical coupling via radiation pressure is a promising approach to gener-
ate entanglement states, e.g. entanglement between mechanical degrees of freedom
[39, 44–46] and entanglement between a light field and a mechanical oscillator
[47–50].

In addition, optomechanical effects have been expected to be utilized as an engine
via radiation pressure [51] and as a form of quantum memory [52, 53], and so
on [54–57]. Especially, the first one was excellently realized as a space solar sail.
IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun) of the Japan
Aerospace Exploration Agency (JAXA) [58] is the first spacecraft to successfully
demonstrate the solar-sail technology in interplanetary space.

As described above, the optomechanical effects have a potential to allow for
breakthroughs in a large variety of fields, such as precise weak-force measurements,
quantum information, fundamental tests of quantum mechanics, and even satellite
development. Effects induced by stationary radiation pressure, such as laser cool-

http://dx.doi.org/10.1007/978-4-431-55882-8_3
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(a)

(d)

(e)

(f)

(b)

(c)

Fig. 1.1 Basic cavity optomechanical effects. Consider an optical cavity that consists of fixed
and movable mirrors. a–c These figures are respectively schematic representations of three types
of detuning: on-resonance, red-detuning (i.e., the frequency of the input light is lower than
the resonant frequency of the optical cavity) and blue-detuning (i.e., the frequency is higher than
the resonant). Here, â is a photon annihilation operator and ĉ is a phonon annihilation operator
of the movable mirror (see also in Sects. 2.1.1 and 2.2.1). a The input light is modulated by the
resonant frequency of the movable mirror, such that the upper (lower) sideband component of the
light acquires (sheds) energy from the mirror. (This is analogous to the generation of Stokes and
anti-Stokes sidebands in Raman scattering.) As a result, there is no exchange of energy between the
light and the mirror. This interaction can be characterized by (â + â†)x̂ , and thus it can be used as
the displacement measurement. Here, x̂ represents the position of the movable mirror. b The upper
sideband component is enhanced by the optical cavity, and thus the motion of the mirror is damped
(cooling). This interaction can be characterized by â†ĉ + âĉ†, and thus it can be used to coherently
transfer the state between the light and the mirror [56, 57]. c The lower sideband component is
enhanced by the optical cavity, and thus the motion of the mirror is anti-damped (heating). This
interaction can be characterized by âĉ + â†ĉ†, and thus it can be used to create the various types
of entanglement states [44–49]. d–f These figures show the intra-cavity power as a function of the
detuning normalized by a resonant frequency of the movable mirror, when the cavity is tuned (d),
the red-detuned (e), and the blue-detuned (f), respectively.

ing, instability and the solar sail have been experimentally realized. However effects
induced by quantum fluctuation of radiation pressure, such as the generation of entan-
glement states, squeezed states and reaching/beating the SQL are still challenging to
be realized, particularly in the macroscopic regime.

http://dx.doi.org/10.1007/978-4-431-55882-8_2
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1.1.1 Quantum Noise Limit

Measuring weak forces is at the heart of modern physics from the macroscopic scale
to the atomic scale, e.g. gravitational-wave (GW) detectors [59–62] and atomic-force
microscopy [63]. In spite of the progress of lasers, optical components and mechani-
cal oscillators, no optomechanical systems have yet reached the free-mass SQL [64].
The free-mass SQL is a next goal after the observation of quantum back-action,
because it not only limits the sensitivity, but also defines a benchmark noise spec-
tral density at which the door is opened to experimentally investigate macroscopic
quantum mechanics, such as the generation of macroscopic entanglement states [39].
Here, we show the details of the SQL.

The force noise (double-sided) spectral density of the SQL, S(2)
FF,SQL is given by

[65]
S(2)

FF,SQL(ω) = �|χm(ω)|−1 + 2�ωmγmm. (1.1)

Here, ω is the angular frequency, � the Dirac constant, m the mass of the oscillator, γm

the amplitude mechanical decay rate (i.e., the mechanical quality factor Qm is given
by Qm = ωm/2γm) and χm the mechanical susceptibility. The first term arises from
the quantization of light and the second term arises from mechanical quantization.
This equation represents that the effect of the oscillator’s quantization can be easily
removed at above the resonant frequency [65, 66] if the mechanical decay rate is
small (i.e., high mechanical quality factor), as shown in Fig. 1.2. It is worth pointing
out that this is close to the actual situation of GW detectors, in which a quasi-freely
suspended mirror with the resonant frequency of around 1 Hz and a very high quality
factor about 107 − 109, are monitored at above 10 Hz. Therefore, Eq. (1.1) is usually
written as S(2)

FF,SQL(ω) = �|χm(ω)|−1 in the field of GW detectors; this is just called
“the SQL” in the field (in this thesis, we use the term ‘usual SQL’ as meaning this).
Also, this equation tells us that: (i) both of the components in Eq. (1.1) are equal at
the resonance; and (ii) the usual SQL, the free-mass SQL, and the SQL are all equal
far above the resonance of the mechanical oscillator.

The part of the SQL derived from the quantization of light is understandable,
as described below. Light is a continuous electromagnetic wave, and its energy is
delivered in discrete packets, called photon. Concerning the light emitted by a laser,
which is a good approximation to a coherent state and has Poissonian statistics, the
photons arrive randomly on a mirror. This randomness, which is called the “vacuum
fluctuation”, produces both direct phase noise and indirect phase noise, called shot
noise and radiation pressure shot noise, respectively. The vacuum fluctuation of the
phase quadrature (orthogonal to a carrier field) directly gives rise to phase noise
(i.e., sensing noise), which is inversely proportional to the optical power, while
the vacuum fluctuation of the amplitude quadrature (parallel to the carrier) creates
a random radiation-pressure force on the mirror (i.e., force noise) that results in
optical phase noise, which is directly proportional to the optical power. In general,
the shot noise dominates at higher frequency and the radiation pressure shot noise
dominates at lower frequency because the mechanical susceptibility of an oscillator
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Fig. 1.2 Various types of quantum noise. Consider measurement of weak force imposed on a
mirror (the force is encoded in the sequence of displacements) using an interferometer. a, b, c
Schematic representations, which are called ball-on-stick pictures, of quantum noise. The amplitude
of the laser is represented as a stick, while the fluctuation of light is represented as a ball on the
stick. Here, X1 is the amplitude quadrature and X2 is the phase quadrature. In the conventional
scheme, the displacement fluctuation is read out using information concerning the phase quadrature.
a Shot noise is drawn. It limits the sensitivity, even if there is no zero-point fluctuation of the
mirror, because it is just the optical effect. b Quantum back-action is drawn. It limits the sensitivity
even if there is no zero-point fluctuation because it is the optomechanical effect induced by the
quantum radiation pressure fluctuation through the mechanical susceptibility. Due to the self-phase
modulation, the state of light is squeezed such that the noise level of the phase quadrature increases.
This effect is enhanced at lower frequency according to the frequency dependence of the mechanical
susceptibility. As a result, the noise level of the quantum back-action is equal to the shot noise and
more, at low frequency region. c Zero point-fluctuation is drawn. It limits the sensitivity even if there
is no vacuum fluctuation of light because it is just the mechanical effect. d Shows the amplitude
power spectrum of the quantum noise for a 1 kg test mass. The contribution of the zero-point
fluctuation subtracted from the SQL [(usual for the field of the GW detectors) depicted as a green
line], the contribution of zero-point fluctuation (cyan), quantum back-action (magenta), shot noise
(red) and the sum of the shot noise and the radiation pressure shot noise (blue) are shown. The
dotted magentaand red represent the case of 10-times higher power than the above. If the sum
of the quantum back-action and the shot noise is minimized with respect to the input power, the
minimum noise is equal to the (free-mass) SQL.

has a frequency dependence of f −2 beyond a resonant frequency (furthermore, the
quantum radiation pressure fluctuation does not have any frequency-dependence
within the cavity linewidth; see also in Sect. 2.3.1). If these two types of noise are not
correlated, they will induce a lower bound on the detector sensitivity independent of
the optical power, which leads to the SQL [65, 67], as shown in Fig. 1.2.

Another part of the SQL derived from the quantization of an oscillator is under-
standable as described below. The oscillator consists of various types of normal
modes, and its energy is delivered in discrete packets, called phonon. Let us focus on
the specific normal mode, and naturally assume that the other modes are sufficiently
sparse, such that there is no spectral overlap with each other. For a specific mechani-
cal mode being sufficiently cooled [e.g., by laser cooling and direct cooling], which
is a good approximation to the ground state and has zero-point energy, the oscillator

http://dx.doi.org/10.1007/978-4-431-55882-8_2


1.1 Optomechanical Effects 7

undergoes inevitable fluctuation. This fluctuation, which is called the “zero-point
fluctuation”, also limits the sensitivity as force noise.

So far, no experiment has yet reached the free-mass SQL, since the thermal fluc-
tuating force induced by a thermal bath is usually far above the free-mass SQL. In
general, reaching the free-mass SQL requires that (i) the force noise be dominated
by quantum back-action, (ii) the readout noise be dominated by shot noise, and (iii)
the readout laser power be optimized such that their sum is minimized. Therefore,
our development of the macroscopic oscillator driven by quantum back-action larger
than thermal fluctuating force is the first step toward the free mass SQL. On the
other hand, reaching the SQL on the resonance represents the ground-state cooling,
because the (approximate) phonon occupation number kBT/�ωm represents the ratio
of the thermal fluctuating force to the SQL (See Eq. 7.1). On the macroscopic scale,
ground-state cooling via (cavity-assisted) passive cooling is very difficult, because
the cavity condition is usually bad (see also in Sect. 2.3.1) due to the low resonant
frequency of the oscillator. This results in an increase of the quantum back-action,
even if the thermal excitation can be removed. The dilution techniques (see also in
Sect. 2.2.2) and a back-action evasion method (see also in Sect. 3.1.1) might enable
the macroscopic mirror to reach its ground state.

1.2 Observation of Quantum Back-Action

Lastly in this chapter, we provide a short history about the observation of quantum
back-action.

The first measurement of quantum back-action was performed using cold atoms
by Stamper-Kurn et al. in 2008 [68]. Using copper wires embedded in an atom chip,
they magnetically trapped and loaded an ultracold ensemble of Rb 87 (the number
of atoms is 105) into the cavity. They then transferred the ensemble into a laser
trap (wavelength of 850 nm), a very far detuned longitudinal mode of the cavity.
The probe light (wavelength of 780 nm) was coupled to another longitudinal mode,
which drives the ensemble through the optical dipole force. Its transmission was
recorded while exiting the ensemble, because the ensemble behaves similarly to
that of a dispersive piece of glass, changing the effective length of the cavity (i.e.,
“dispersive” optomechanical coupling). By blue-detuning the probe laser, such that
it deposited phonons into the ensemble, the quantum back-action could be observed
as a heating of the ensemble. As a result, they were able to measure the cavity-light-
induced heating of the intracavity atomic ensemble. After this measurement, they
also measured the ponderomotive squeezing in 2012 [42].

The second measurement was performed using a photonic crystal nanobeam by
Safavi-Naeini et al. in 2012 [69]. At first, they reported their experiment as being
an observation of the quantum motion of a nanomechanical resonator. Khalili et al.
[65] showed that the results of this experiment not only characterized the quantum
motion, but also demonstrated the existence of quantum back-action noise, just as in
2012.

http://dx.doi.org/10.1007/978-4-431-55882-8_7
http://dx.doi.org/10.1007/978-4-431-55882-8_2
http://dx.doi.org/10.1007/978-4-431-55882-8_2
http://dx.doi.org/10.1007/978-4-431-55882-8_3
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In their experiment, they used a patterned silicon nanobeam, which formed an
optomechanical crystal capable of localizing both optical and acoustic waves. An
optical fiber taper was used to couple light evanescently into the breathing mechanical
mode of the silicon optomechanical device (effective mass of 311 fg). The cavity was
designed to have two optical resonances, one for cooling (wavelength is 1460 nm)
and one for readout of mechanical motion (wavelength is 1545 nm). In this case, the
cooling had the key to characterize the zero-point motion. After this measurement,
they also measured ponderomotive squeezing in 2013 [43].

The third measurement was performed using a SiN membrane (effective mass
of 7 ng) by Purdy et al. in 2013 [13]. The membrane motion could be coupled to
a cavity through the dispersive interaction. This interaction imprinted phase and
amplitude modulations onto transmitted laser light, thus allowing for readout of the
membrane motion. In addition, the laser applied an optical gradient force to the
membrane, while pushing it toward higher optical intensity. They used one laser
source (wavelength of 1064 nm) being split into two components by an acousto-
optical modulator (AOM): one for cooling and the other for readout of the mechanical
motion. In this case, the cooling was used for reducing the technical difficulties (e.g.,
parametric instability), not for enhancing the ratio of the quantum back-action to
thermal noise (see also in Sect. 2.2.2). After this measurement, they also measured
the ponderomotive squeezing in 2013 [14].

In our experiment, we developed a suspended 5 mg mirror driven by (classical)
back-action, whose quantum component was estimated to be larger than thermal
fluctuating force by a factor of 1.4 ± 0.2 at 325 Hz [16]. Concerning the macroscopic
mass scale, there have been intensive studies at MIT, NAOJ, etc. [70–72] since
the mid-2000s. The MIT group used a 1 g suspended mirror, and they reported the
usefulness of the double optical spring [21]. The NAOJ group (currently, ICRR
group) used a 22 mg suspended mirror, and they reported the measurement of an
anti-torsional spring effect [26] in a linear optical cavity. Our development are based
on their findings. The details will be described after this chapter.
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Chapter 2
Theory of Optomechanics

Abstract In this chapter, we describe the basic aspects of optical cavities, mechanical
resonators, and cavity optomechanical systems, e.g. optical response of the cavity,
mechanical dissipation (thermal decoherence), dilution technique, the (double) op-
tical spring, quantum back-action, phase-induce back-action noise, and Raman de-
coherence. Especially, the dilution technique due to the gravitational and optical
potential is explained in detail, because it is one of the most important technical
features in our experiment. This chapter also presents the basic concepts and math-
ematical tools for understanding later chapters.

Keywords Gravitaional dilution · Optical dilution · Cavity optomechanics ·
Quantum back-action · Bad cavity condition

2.1 Optical System

There are two equally important aspects in the physical theory: the mathematical
formalism of the theory, and its intuitive interpretation. In this section, we describe
the mathematical formalism for the quantization of light and the result. Also, we
present intuitive interpretations of classical/quantum fluctuation, which is so-called
the ball-on-stick picture.

2.1.1 The Quantized Electromagnetic Field

In 1927, Paul Dirac proposed quantization of the electromagnetic field in order to
solve the problem of the wave-particle duality. In this quantum theory, each mode of a
radiation field is identified by a quantized simple harmonic oscillator.f The properties
of the quantized field are introduced in the context of an optical cavity mode with
angular frequency of ωk. The positive and negative components of the electric field
can be written in terms of the boson creation and annihilation operators, â†

k and âk,
and the spatial mode function, u(r):

© Springer Japan 2016
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E(+)(r, t) = i
∑

k

(
�ωk

2ε0

)1/2

âku(r) exp(−iωkt), (2.1)

E(−)(r, t) = −i
∑

k

(
�ωk

2ε0

)1/2

â†
ku(r)∗ exp(iωkt). (2.2)

Here, � is the Dirac constant and ε0 is the permittivity of free space. The sum of the
positive and negative components gives the whole electric field given by

E(t) = i
∑

k

(
�ωk

2ε0

)1/2 [
âku(r) exp(−iωkt) − â†

ku(r)∗ exp(iωkt)
]
. (2.3)

The creation and annihilation operators are dimensionless, and satisfy the boson
commutation relations,

[âk, âk′ ] = [â†
k, â†

k′ ] = 0, [âk, â†
k′ ] = δkk′ . (2.4)

These commutation relations can allow us to distinct between classical and quantum
optics. In classical optics, an equivalent of Eq. (2.3) can be found by replacing the
annihilation and creation operators with complex field amplitudes. The amplitudes in
classical optics commute, and thus they are not limited by the Heisenberg uncertainty
relation and its consequences. In quantum mechanics, however, the operators must be
Hermitian in order to represent observable quantities. The annihilation and creation
operators are not Hermitian, and are thus not observables. They can be written in
terms of a Hermitian operator pair for the amplitude quadrature, X̂1, and the phase
quadrature, X̂2:

â = 1

2
(X̂1 + i X̂2), (2.5)

â† = 1

2
(X̂1 − i X̂2), (2.6)

The quadrature operators for the amplitude and phase are:

X̂1 = â + â†, (2.7)

X̂2 = −i(â − â†). (2.8)

The amplitude and phase quadratures represent non-commuting observable para-
meters. The operator for an arbitrary quadrature, ξ, can be defined using a linear
combination of X̂1 and X̂2,

X̂ξ = X̂1 cos(ξ) + X̂2 sin(ξ). (2.9)
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2.1.2 The Heisenberg Uncertainty Principle

The Heisenberg uncertainty principle (HUP) [1] quantifies the ultimate precision of
continuous measurement of non-commuting observable parameters, as described in
Chap. 1. HUP tells us that if any two observable parameters, Ô1 and Ô2, satisfy the
commutation relation,

[Ô1, Ô2] = ξ, (2.10)

they are bounded by HUP,

ΔÔ1ΔÔ2 ≥ |ξ|
2

, (2.11)

where ΔÔ is the standard deviation of the operator Ô . The standard deviation is
defined by

ΔÔ =
√

〈Ô2〉 − 〈Ô〉2. (2.12)

The variance of the operator is the square of the standard deviation,

V = (ΔÔ)2. (2.13)

The commutator relation of the amplitude and the phase quadratures of the electro-
magnetic field is

[X̂1, X̂2] = 2i, (2.14)

and thus HUP is

ΔX̂1ΔX̂2 ≥ 1. (2.15)

This relation shows that the trade-off between the fluctuation of the amplitude quadra-
ture and that of the phase quadrature. Therefore, this also shows the trade-off between
the shot noise and the radiation pressure shot noise for the force measurement.

2.1.3 States of Light

Here, several common states (a coherent state, a vacuum state, a squeezed state of
light, and a classically noisy state) are described and shown in ball-on-stick pictures.
In the ball-on-stick pictures, the classical steady-state coherent amplitude of the field
is represented as a stick, while the fluctuation of light is represented as a ball on the

http://dx.doi.org/10.1007/978-4-431-55882-8_1
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stick, which is analogous to the phasor diagram used in classical physics where the
orthogonal axes are the real and imaginary parts of an electromagnetic field. Various
states of light can be visually understood by this.

• The coherent state
A coherent state is a minimum-uncertainty state with equal uncertainties in the
two quadrature components, so that

ΔX̂1 = ΔX̂2 = 1. (2.16)

The quadrature fluctuations of the coherent state have no frequency dependence,
and obey Poissonian statistics. For the coherent state, the sidebands are randomly
distributed in phase, and thus there is no special phase. Although the coherent
state is realized by the laser, the laser light has excess noise below the MHz
region, whereas we measured a pendulum motion. Thus, stabilization of the laser
intensity fluctuation is necessary for measurement of the quantum back-action.
In our case, the quantum back-action was now estimated by measurement of the
classical behaver, see also in Fig. 6.5a.

• The vacuum state
A vacuum state is also a minimum-uncertainty state with equal uncertainties in the
two quadrature components, but it has no coherent amplitude (ā = 〈â(t)〉 = 0). It
always occupies all frequency, spatial, and polarization modes. The vacuum state
is important in quantum-optical experiments, since it enters optical systems in any
unfilled ports of the beam splitters, cavities, and partially transmissive mirrors. In
our case, the vacuum state prevents stabilization of the laser intensity noise from
achieving the minimum uncertainty level, see in Sect. 5.1 and Appendix.

• The squeezed state
A squeezed state is a non-classical state in which fluctuation is reduced below
the symmetric quantum limit in one quadrature component. In order to satisfy
HUP, the standard deviation of the orthogonal quadrature must be greater than the
quantum noise limit and the product of the two quadratures greater than or equal
to unity. If the amplitude quadrature is reduced, it is called the amplitude squeezed
state, and vice versa. Thus, the minimum uncertainty amplitude squeezed state,
for example, has

ΔX̂1 = 1/z, (2.17)

ΔX̂2 = z, (2.18)

where z is a real and a positive number. The amplitude-squeezed state is shown in
Fig. 2.1.

• Classically noisy states
In general, lasers produce non-minimum-uncertainty states, which have excess
noise of classical origin at sideband frequencies below the MHz region. The clas-
sical noise of a laser is often many times greater than the quantum noise in both
quadratures,

http://dx.doi.org/10.1007/978-4-431-55882-8_6
http://dx.doi.org/10.1007/978-4-431-55882-8_5
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Fig. 2.1 Ball-and-stick
pictures for states of light.
a Coherent state is
represented. b Vacuum state
is represented. c Amplitude
squeezed state is
represented. d Classically
noisy state is represented

(a)

Δ

(c) (d)

(b)

ΔX̂1 ≥ 1, ΔX̂2 ≥ 1. (2.19)

The classical noise can be reduced via: passive noise suppression using an optical
cavity [2]; active feedback control ; or both. The noisy state is characterized by
comparing with the shot noise level in units of dB (so-called the relative to the
shot-noise level) and its coherent laser power in units of 1/Hz1/2 (so-called relative
intensity noise). The former is an useful index for quantum measurements, such as
observation of the quantum back-action and generation of the squeezed state. The
latter is an useful index for force measurement, such as that used in gravitational-
wave detectors.

2.1.4 Optical Cavity

Fabry-Perot interferometers, often referred to as (optical) cavities, consist of two or
more partially transmissive mirrors in order to make the light resonate inside it. In
this section, the equation of motion for a cavity mode is introduced; we then obtain
the reflected and transmitted fields using this equation.

2.1.4.1 Equation of Motion

Consider the empty cavity shown in Fig. 2.2. It is made of three partially transmissive
optics labeled, in, out, and l, referring to the input coupler, the output coupler, and
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Fig. 2.2 Layout of the
optical cavity. Consider a
cavity composed of two
mirrors: an input coupler,
with a decay rate of κin; an
output coupler, with a decay
rate of κout; a mirror to
represent intracavity loss,
with a decay rate of κloss;
and the roundtrip length of
the cavity, L . The cavity
mode is labeled â. The
extracavity fields are:
Âin, Âout, Âref , Âloss, δ Âout
and δ Âloss

δ

δ

δ

the partially transmissive mirror used to simulate losses, respectively. The equation
of motion for cavity mode â in units of

√
photon is [3]

˙̂a = −(iωc + κ)â + √
2κin Âine−iωAt + √

2κout Âout + √
2κloss Âloss, (2.20)

where the driving field, Ain, in units of
√

photon/s has a coherent amplitude at
frequency ωA; the other fields, Aout and Aloss, are assumed to be in the vacuum state.
The cavity mode has a resonant frequency of ωc.

The equation of motion can be written in the rotating frame of reference by setting

â → âe−iωAt , (2.21)

Âin → Âine−iωAt , (2.22)

and thus

˙̂a = (i	 − κ)â + √
2κin Âin + √

2κout Âout + √
2κloss Âloss, (2.23)

where Δ = ωA − ωc is the cavity detuning [i.e., the positive (negative) detuning
means the blue-detuning (red-detuning)]. In the mean-field approximation [4, 5],
the amplitude decay rates for each mirror are given by the amplitude transmissivity
divided by the round trip time, τ = L/c, where L is the roundtrip of the cavity.
That is,
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κin =
√

Tin

τ

 Tj

2τ

κout 
 Tout

2τ

κloss 
 1 − Lc

2τ
, (2.24)

where Lc is the cavity round-trip loss. The total decay rate is given by

κ = κin + κout + κloss. (2.25)

In the steady state, the cavity mode can be found by setting ˙̂a = 0 and considering
the time-independent component ā. Given that the steady state amplitudes of the fields
Āout = Āloss = 0, the steady state cavity mode is given by

ā =
√

2κin

κ − i	 Āin. (2.26)

This equation enables us to obtain the reflected and transmitted fields as a function
of detuning in the following was. We are also interested in the Fourier components
of the cavity mode. These can be found by Fourier transforms of the operators,

Q(ω) =
∫ ∞

−∞
Q(t) exp(−iωt)dt, (2.27)

for Q = â, Âin, Âout, and Âloss. The equation of motion in the frequency domain is

−iωδâ = (i	 − κ)δâ + √
2κinδ Âin + √

2κinδ Âout + √
2κlossδ Âloss, (2.28)

where ω is the sideband frequency. Simply put, this fluctuating term induces the
quantum back-action force (details are described in Sect. 2.3).

2.1.4.2 Reflected and Transmitted Fields

Using the cavity input-output relations [3], the reflected field, Aref and transmitted
field, Atrans, can be determined:

Atrans = √
2κouta − Aout,

Aref = √
2κina − Ain, (2.29)



20 2 Theory of Optomechanics

−5 0 5
0

0.2

0.4

0.6

0.8

1

Normalized Detuning

T
ra

ns
m

is
si

vi
ty

 a
nd

 R
ef

le
ct

iv
ity

Transmissivity
Reflectivity

−5 0 5
−200

−100

0

100

200

Normalized Detuning

Ph
as

e 
Sh

if
t [

de
g.

]

in Transmission
in Reflection

(a) (b)

Fig. 2.3 Optical cavity. These show the reflected and transmitted fields as a function of detuning
normalized by the cavity decay rate. a The (power) reflectivity and transmissivity are shown. b The
phase shifts in reflection and transmission are shown

which give

Ātrans = 2
√

κinκout

κ − i	 Āin, (2.30)

Āref = 2κin − κ + i	
κ − i	 Āin. (2.31)

The amplitude transmissivity and reflectivity of the cavity are respectively given by

t (	) = Ātrans

Āin
= 2

√
κinκout

κ − i	 , (2.32)

r(	) = Āref

Āin
= 2κin − κ + i	

κ − i	 , (2.33)

and both of them are shown in Fig. 2.3. By using these equations, one can ex-
perimentally estimate important parameters, i.e., κ,κin and κout, see in Sects. 6.1
and 6.3.

2.2 Mechanical Oscillator

In this section, we describe the mechanical oscillator, especially concerning mechan-
ical dissipation. Mechanical dissipation is one of the most important parameters,
because the Fluctuation-Dissipation Theorem (FDT) [6] connects the spectrum of
the thermal fluctuating force to the mechanical dissipation in the system, which is
given by

http://dx.doi.org/10.1007/978-4-431-55882-8_6
http://dx.doi.org/10.1007/978-4-431-55882-8_6
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S(2)
FF,th = 2kBTth

ω
Imχm = 4kBTthγmm. (2.34)

Here, kB is the Boltzmann constant, Tth is the temperature of the thermal bath, χm

is the mechanical susceptibility derived below, ω is the sideband frequency, γm is
the mechanical damping rate (i.e., it represents the dissipation) and m is the mass of
the mechanical oscillator. This equation represents that the reduction of the thermal
noise requires a low mechanical dissipation and a low bath temperature. To reduce
the dissipation, we used gravitational dilution technique. Details are described below.

2.2.1 Mechanical Normal Modes

Let us consider a suspended mirror (i.e., pendulum) having a resonant frequency
of ωm , naturally assuming that the mode spectrum is sufficiently sparse such that
there is no spectral overlap with other mechanical modes, such as a rocking mode
and a violin mode. This condition can be easily satisfied by choosing appropriate
parameters [7]. The equation of motion for the position of the mirror, x(t), can be
described by

mẍ + 2mγm ẋ + mω2
mx = Fext. (2.35)

Here, m is the mass of the pendulum, γm is the amplitude damping rate (i.e., the
mechanical quality factor is Qm = ωm/2γm), ωm i the resonant frequency of the
oscillator, and Fext(t) is the external force acting on the mirror. Even if there is no
external force, it is given by the thermal fluctuating force.

To solve this equation, we again introduce the Fourier transform via x(ω) =∫ ∞
−∞ dt exp(−iωt)x(t). Then, the mechanical susceptibility χm(ω) connecting the

external force to the displacement of the oscillator is given by

χm(ω) ≡ x(ω)

Fext(ω)
= 1

m

1

ω2
m − ω2 + 2iωγ

. (2.36)

The stationary response is given by χm(0) = (mω2
m)−1 = 1/km, where km is the

spring constant.
A quantum-mechanical treatment of the mechanical harmonic oscillator leads to

the Hamiltonian

Ĥ = �ωm ĉ†ĉ + 1

2
�ωm. (2.37)
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Here, the phonon creation, ĉ†, and annihilation, ĉ, operators have been introduced
similarly to Eqs. (2.7), (2.8), with

x̂ = xzpf(ĉ + ĉ†), (2.38)

p̂ = −imωmxzpf(ĉ − ĉ†), (2.39)

where

xzpf =
√

�

2mωm
(2.40)

is the zero-point fluctuation (root-meas-square) amplitude of the mechanical oscil-
lator. The quantity ĉ†ĉ is the phonon number operator, whose average is denoted
by n̄ = 〈ĉ†ĉ〉. In general, the mechanical oscillator is coupled to a high-temperature
bath, and thus the average phonon number will evolve according to the expression [8]

d

dt
〈n〉 = −2γm (〈n〉 − n̄th) . (2.41)

For an oscillator that is initially in the ground state, the time dependence of the
occupation is given by

d

dt
〈n〉t=0 = 2n̄thγm 
 kBTth

�Qm
, (2.42)

where n̄th is the average phonon number of the thermal bath, Tth is the temperature
of the thermal bath, and here we suppose the mechanical decay rate γm has no
dependence on frequency for the sake of simplicity. Equation (2.42) represents the
thermal decoherence rate having the unit of Hz, because it gives the inverse time
of the absorption of a phonon from the environment. This expression shows that in
order to attain a low thermal decoherence, a high mechanical quality factor, Qm, and
a low temperature bath are important. In addition, from this equation, the number of
coherent oscillations in the presence of thermal decoherence nosc is given by,

nosc = ωm × �Qm

kBTth
= Qm · fm × h

kBTth
. (2.43)

Thus, the “Qm · fm” product quantifies the decoupling of the mechanical resonator
from a thermal environment. Note that full coherence over one mechanical period
is obtained for Qm · fm > kBTth/�, i.e., Qm · fm > 6 × 1012 Hz is a minimum re-
quirement for room-temperature quantum optomechanics. One might consider that
satisfying the criteria is impossible on the macroscopic scale; however, the dilution
techniques described below will enable us to realize it.
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2.2.2 Mechanical Dissipation & Dilution Techniques

The energy loss of mechanical oscillations is quantified by the (amplitude) mechan-
ical dissipation rate, γm = ωm/2Qm. Here, we introduce the loss mechanisms:

• Viscous damping is mainly caused by interactions with the surrounding gas atoms.
A resistance force proportional to the velocity is applied to the oscillator, which
is given by γgas = S P

√
mmol/(2C

√
kBT m), where C is a dimensionless constant

of order unity that depends on the shape of the oscillator, S is the cross-sectional
area, P the pressure, mmol the mass of a residual molecule of the gas, and m the
mass of a mechanical oscillator [9]. In our case, the gas damping will become an
issue in future, see in Chap. 7.

• Clamping losses are due to radiation of elastic waves into the substrate through
the supports of the oscillator. In our case, a thin tungsten wire is clamped between
two aluminum plates at the top, while a mirror is attached to the wire using an
epoxy glue at the bottom. Although this lossy configuration has sufficient quality
factor for observing the quantum back-action, it will not be sufficient for future
experiments. Therefore, we must change it to other relatively lossless materials,
such as stainless steels (See Chap. 7).

• A thermoelastic damping is a fundamental anharmonic effect, which is caused
by heat flow along the temperature gradients. This effect often causes problems,
such as a mirror thermal noise, because the temperature gradients often occur at
around the laser beam spot on the mirror. In our case, the mirror thermal noise has
been negligible until now; however, it will also become an issue in the future (See
Chaps. 5 and 7).

• An intrinsic loss of a material is caused by the relaxation of intrinsic defect states in
the bulk or surface of the material. In general, intrinsic loss could not be measured
directly because of the loss coming from the support for the measurement. To solve
this problem, a nodal support system, which in principle does not introduce any
external loss to the sample by supporting it at their nodal points, was proposed by
Kenji Numata in 2000 [10]. Since then, this technique has been used [11, 12]. In
our case, it was estimated using a torsional mode (See Chap. 6), similarly to that
described in Ref. [13].

The various dissipation processes contribute independently to the overall mechanical
losses, and hence add up incoherently. The resulting mechanical quality factor, Qtotal,
is given by 1/Qtotal = ∑

i 1/Qi, where i labels the different loss mechanisms.
Since the loss of the energy is only associated with the elastic part of the stored

energy, the mechanical dissipation can be mitigated by storing most of the mechanical
energy in a nearly lossless gravitational or optical potential, thereby strongly diluting
the effect of the dissipation.

• Gravitational dilution: The total mechanical loss of an oscillator is diluted with
gravity by a factor of kgrav/kel, where kgrav and kel are the gravitational and elastic
spring constants [14]. The mechanical quality factor thus becomes about kgrav/kel-
times larger. This effect can be given by using loss angle φ, as below

http://dx.doi.org/10.1007/978-4-431-55882-8_7
http://dx.doi.org/10.1007/978-4-431-55882-8_7
http://dx.doi.org/10.1007/978-4-431-55882-8_5
http://dx.doi.org/10.1007/978-4-431-55882-8_7
http://dx.doi.org/10.1007/978-4-431-55882-8_6
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kel(1 + iφ) + kg =
(

1 + kg

kel

)
kel

[
1 + iφ

1 + kg

kel

]

 kg

[
1 + iφ

1 + kg

kel

]
. (2.44)

The loss angle is given by using the quality factor, Q, as follows

Q = 1

φ

(
structure damping, i.e., γ = ω2

g

2Qω

)
, or (2.45)

= 1

φ

ω

ωg

(
viscous damping, i.e., γ = ωg

2Q

)
. (2.46)

Thus, the quality factor is enhanced by the gravitational dilution by a factor of
Qen, which is given by

Qen =
(

1 + kg

kel

)
. (2.47)

In practice, only kel is variable, and thus thermal fluctuating force is also diluted
as below,

S
′(2)
FF,th = 4kBT

ωg

2Q′ 
 S(2)
FF,th

kel

kg
(2.48)

Here, S(2)
FF,th is thermal noise with the small gravitational dilution, while the para-

meters with prime indicates the similar but with the large gravitational dilution.
In our case, an ultimate thin wire (the radius is 1.5µm) assures that the amount of
energy stored in the pendulum is dominated by the gravitational potential over the
elastic bending energy of the wire. More concretely, the mechanical dissipation is
about 600-times diluted (See Chaps. 5 and 6).

• Optical dilution: Mechanical energy is stored in the lossless potential provided
by the optical restoring forces, which dilutes the effects of internal material dis-
sipation. The mechanical quality factor thus becomes about kopt/kel-times and
ωopt/ωel-times larger for the structure damping case and the viscous damping
case, respectively. Here, feff is the effective resonant frequency of the mechanical
oscillator trapped by the optical spring. In the case of the soft suspension, such
as the suspended mirror, this effect is relatively increased, and thereby it is often
used with pendulums [15–17]. This effect can be given by using loss angle φ, as
below

kel(1 + iφ) + kopt =
(

1 + kopt

kel

)
kel

[
1 + iφ

1 + kopt

kel

]
. (2.49)

http://dx.doi.org/10.1007/978-4-431-55882-8_5
http://dx.doi.org/10.1007/978-4-431-55882-8_6
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The loss angle is given by using the quality factor, Q, as follows

Q = 1

φ

(
structure damping, i.e., γ = ω2

el

2Qω

)
, or (2.50)

= 1

φ

ω

ωel

(
viscous damping, i.e., γ = ωel

2Q

)
. (2.51)

Thus, the quality factor is enhanced by the optical dilution by a factor of Qen,
which is given by

Qen =
(

1 + kopt

kel

)
(structure damping) , or (2.52)



(

ωel

ωopt
+ ωopt

ωel

)

 ωopt

ωel
(viscous damping) . (2.53)

In practice, kopt is variable, and thus thermal fluctuating force is not diluted as
below,

S
′(2)
FF,th = 4kBT

ωopt

2Q′ = 4kBT
ωel

2Q
= S(2)

FF,th (2.54)

Here, S(2)
FF,th is thermal noise with the small gravitational dilution, while the para-

meters with prime indicates the similar but with the large gravitational dilution.
In our case, the effective frequency of the pendulum is enhanced from 2 to 400 Hz
(See Chap. 6).

We note that the only gravitational dilution can reduce thermal fluctuating force
from Eqs. (2.48) and (2.54), since we naturally suppose that the gravitational dilution
is changed without changing the gravitational potential, while the optical dilution
is changed by changing the optical potential. The dilution techniques mentioned
above have a key to experimentally investigate the macroscopic quantum mechanics
because any macroscopic object is strongly affected by thermal decoherence as just
it is. When the oscillator is trapped and damped by the nearly lossless field, the
Eq. (2.41) is given by

d

dt
〈n〉 = −2γm (〈n〉 − n̄th) − 2γeff

(〈n〉 − n̄th,eff
)
, (2.55)

where γeff is the effective mechanical decay rate, n̄th,eff (becomes zero for lossless
fields) is the effective thermal occupation number of the effective bath, and here we
also suppose the mechanical decay rate and effective decay rate have no dependence
on frequency (i.e., viscous damping model is supposed). Here, the number of coherent
oscillations in the presence of thermal decoherence is given by

http://dx.doi.org/10.1007/978-4-431-55882-8_6
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nosc = �

2kBTth
× ω2

eff

γm
,

= Qm · fm × h

kBTth
×

(
ωeff

ωm

)2

. (2.56)

Thus, the requirement for room-temperature quantum optomechanics is mitigated
by a factor of (ωeff/ωm)2. In our case, the original Qm · fm is about 1 × 106 Hz,
which is about 6 × 106-times lower than the original requirement, even though the
gravitational potential increases the mechanical quality factor. The optical spring
further reduces the difference to 6 × 106 · (2/400)2 = 150 at the least. In practically,
since our measurement determined the dissipation model as structure damping, the
requirement ought to be further mitigated (but it is not calculated now). Also, the
effective phonon number of the mechanical oscillator is given by

neff = kBTth

�ωm
×

(
ωm

ωeff

)2

× Qeff

Qm
,

= Qeff

nosc
. (2.57)

Thus, if the requirement for f · Q product is satisfied, neff can be reduced under one
with Qeff over one.

2.3 Optomechanical System

2.3.1 Theoretical Derivation of Quantum Back-Action

Here, we calculate the quantum back-action in the optomechanical system shown in
Fig. 2.4. We again start from Newton’s law to describe the mechanical response,

mẍ + 2mγm ẋ + kmx = F, (2.58)

where m is the mass of the movable mirror (mechanical oscillator), ωm is the me-
chanical resonant frequency, γm is the mechanical amplitude decay rate, km is the
mechanical spring constant, and x is the position for the mirror. To derive the me-
chanical susceptibility, we Fourier transform Eq. (2.58) according to the following
conventions: f (ω) ≡ ∫ ∞

−∞ dt f (t) exp(−iωt),

χm ≡ x

F
= 1

m(ω2
m − ω2 + i2ωγm)

. (2.59)
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Let us next calculate the response of an optomechanical system to two independent
laser driving fields. We consider the two beams in order to explain so-called “double
optical spring” [18]. The Hamiltonian describing the optomechanical coupling [19]
can be written and linearized in the form

Ĥ = �ωc(x)â†â + �ωc(x)b̂†b̂ + Ĥκ


 �ωcâ†â + �ωcb̂†b̂ + �gâ†âx + �gb̂†b̂x + Ĥκ, (2.60)

where g = 2ωc cos β/L is the optomechanical coupling constant1 (the coupling con-
stant will be given in Chap. 5, Sect. 5.2.4), ωc is the cavity resonance frequency, β is
the incident angle on the movable mirror, L is the round-trip length and Ĥκ repre-
sents the optical input and output coupling; and â and b̂ are the annihilation operators
(cavity modes) for two counterpropagating directions in the triangular cavity, respec-
tively. The Heisenberg Langevin equations of motion for the cavity modes are:

˙̂a = −(κ + iωc)â − igaxâ +
∑

l

√
2κl Âl, (2.61)

˙̂b = −(κ + iωc)b̂ − igbxb̂ +
∑

l

√
2κl B̂l, (2.62)

where the κin1,κin2,κin3 are the cavity amplitude decay rates for each mirror, κin4 is
the decay rate for the cavity round-trip loss and κ is the total decay rate; Âl and B̂l

are the input optical fields. The equation of motion can be written in a rotating frame
of reference by setting â = exp(−iωat)â and linearized in the following form:

δ̇â = −(κ − iΔa)(ā + δâ) − iGaδx + √
2κin1 Āin1 +

∑

l

√
2κlδ Âl, (2.63)

˙δb̂ = −(κ − iΔb)(b̄ + δb̂) − iGbδx + √
2κin2 B̄in2 +

∑

l

√
2κlδ B̂l, (2.64)

where Δa = ωa − ωc − Ga x̄ and Δb = ωb − ωc − Gb x̄ are the cavity detuning;
Ga = āg and Gb = b̄g are the light-enhanced optomechanical couplings for the
linearized regime; ā and b̄ are the average parts for each cavity mode; δâ and δb̂ are
the fluctuating parts for each cavity mode; Āin1 and B̄in2 are the real valued coherent
amplitudes for input lasers; δ Âl and δ B̂l, for l = in1, in2, in3, in4 are the vacuum
fluctuation entering from each port.

The average intracavity field amplitudes are described by Eqs. (2.63) and (2.64):

ā =
√

2κin1

κ − iΔa
Āin1, (2.65)

1optomechanical single-photon coupling strength g0 (e.g. in Ref. [8, 20]), which gives Ĥ =
�g0â†â(b̂ + b̂†)), is xzpf -times lager than g.

http://dx.doi.org/10.1007/978-4-431-55882-8_5
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Fig. 2.4 Layout of the
triangular cavity. The
cavity consists of three
mirrors: the input coupler for
the driving beam, with a
decay rate of κin1; the input
coupler for the spring beam,
with a decay rate of κin2; the
movable mirror, with a decay
rate of κin3; and a mirror to
represent intracavity loss,
with a decay rate of κin4. The
cavity mode is labeled â and
b̂. The extracavity fields are:
Âin1, δ Âin2, δ Âin3, δ Âin4,

δ B̂in1, B̂in2, δ B̂in3, and δ B̂in4

b̄ =
√

2κin2

κ − iΔb
B̄in2. (2.66)

From these equations, the intracavity power is given by

P̄circ = �ωc|a|2
τ

+ �ωc|b|2
τ

= 2κin1

τ (κ2 + Δ2
a)

P̄in1 + 2κin2

τ (κ2 + Δ2
b)

P̄in2,

= P̄in1,circ + P̄in2,circ (2.67)

where τ is the cavity round-trip time.
The fluctuation components of Eqs. (2.63) and (2.64) are similarly at given by

δ̇â = −(κ − iΔa)δâ − iGaδx +
∑

l

√
2κlδ Âl, (2.68)

˙δb̂ = −(κ − iΔb)δb̂ − iGbδx +
∑

l

√
2κlδ B̂l. (2.69)

In terms of the frequency components, these can be rewritten by

δâ = χa(−iGaδx +
∑

l

√
2κlδ Âl), (2.70)

δb̂ = χb(−iGbδx +
∑

l

√
2κlδ B̂l). (2.71)
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Here, χa = (κ + i(ω − Δa))
−1 and χb = (κ + i(ω − Δb))

−1 are the cavity suscep-
tibilities for the two modes. These lead to forces induced by the cavity modes, being
applied to the movable mirror, which are given by:

F̄BA = − (ga + gb)τ

ωc
P̄circ, (2.72)

δFBA = i�|Ga|2δx(χa(ω) − χ∗
a(−ω)) + i�|Gb|2δx(χb(ω) − χ∗

b(−ω)), (2.73)

δ F̂BA = −�G∗
aχa(ω)

∑

l

√
2κlδ Âl − �Gaχ

∗
a(−ω)

∑

l

√
2κlδ Â†

l

− �G∗
bχb(ω)

∑

l

√
2κlδ B̂l − �Gbχ

∗
b(−ω)

∑

l

√
2κlδ B̂†

l , (2.74)

where F̄BA is the average back-action force, δFBA is the dynamic back-action, which
influences the dynamics of the harmonically bound mirror, and δ F̂BA is the quantum
back-action force.

From the dynamic back-action, the optical spring effect is given by

K (ω) = −δFBA

δx
= 2�|Ga|2 Δa

(κ + iω)2 + Δ2
a

+ 2�|Gb|2 Δb

(κ + iω)2 + Δ2
b

= 8Pin1,circωc

Lc

Δa cos2(β)

(κ + iω)2 + Δ2
a

+ 8Pin2,circωc

Lc

Δb cos2(β)

(κ + iω)2 + Δ2
b

. (2.75)

The experiment is performed under the “slowly varying” condition, ω 
√
Δ2

a + κ2; then, the spring effect can be written by

K = 2�|Ga|2
[

Δa

κ2 + Δ2
a

− 2iκΔa

(κ2 + Δ2
a)

2
ω

]
+ 2�|Gb|2

[
Δb

κ2 + Δ2
b

− 2iκΔb

(κ2 + Δ2
b)

2
ω

]

≡ Kopt + iωΓopt. (2.76)

This condition is also called the “bad” cavity condition because of the weakness of
the cooling effect due to the delay of light itself. Under this condition, the intracavity
optical power is largely increased as an effect of the laser cooling being increased,
and thereby the back-action is also increased. If the light-enhanced optomechanical
coupling constant, G, is larger than

√
mκγmωm/�, the back-action becomes larger

than the SQL on resonance of the mechanical oscillator. Thus, in general, this con-
dition is not appropriate for the laser (passive) cooling of the object for achieving its
ground state (this condition is suitable for feed-back cooling [21]). On the other hand,
in the resolved sideband regime, defined as ωm � κ, one can reduce the occupation
number to (κ/2ωm)2 [22, 23]. Therefore, this condition is called the “good” cavity
condition.
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This spring modifies the dynamics of the mirror as

ω2
eff = ω2

m + Kopt

m
, (2.77)

γeff = γm + Γopt

2m
, (2.78)

which indicates that the positive (negative) rigidity is always accompanied by neg-
ative (positive) damping. In either case, the system is unstable if we use a single
optical spring. To stabilize the system, one can use a feedback control; however, it is
difficult to control if we use a tiny oscillator. An appropriate alternative is to imple-
ment the idea of the double optical spring [18], by inputting two lasers to the cavity
at different frequencies. One laser with a small detuning provides a large positive
damping, while the other higher input-power beam with a large detuning provides
a strong restoring force. The resulting system is self-stabilized with both positive
rigidity and positive damping, as shown in Fig. 2.5. In addition, unlike mechanical
springs, the optical spring effect does not change the thermal excitation spectrum
of the mirror, since the optical field is almost in its ground state (in our case, the
infrared optical field has an effective temperature of 15,000 K). We can measure the
quantum back-action force fluctuation as a displacement fluctuation via the effective
susceptibility, χeff .

The double-sided force spectrum, S(2)
F F,q , is written as

S(2)
FF,q = 〈δ F̂BA(−ω)δ F̂BA(ω)〉

= 2�
2κ|Ga|2|χa(−ω)|2 + 2�

2κ|Gb|2|χb(−ω)|2

= 2Nin1,circ
�

2g2

κ

(
1 +

(
ω + Δa

κ

)2
)−1

+ 2Nin2,circ
�

2g2

κ

(
1 +

(
ω + Δb

κ

)2
)−1

.

(2.79)

Therefore, the quantum back-action is given by |χeff |2S(2)
FF,q as displacement fluc-

tuations (in the unit of m2/Hz). The ratio of the quantum back-action to thermal
fluctuating force is then given by

S(2)
FF,q

S(2)
FF,th

= 1

nth

Ncircg2

κγm
. (2.80)

Here, Ncirc is the intracavity photon number of the single laser, which dominates the
quantum back-action, and we suppose the bad cavity condition.

In practice, a laser has a classical intensity fluctuation generating the “classical”
back-action force. This effect is given by
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(a) (b)

(c)

Fig. 2.5 The double optical spring effect. a The beams illustrated as the red and the blue lines
incident on the fixed and controlled mirrors, respectively. b The intracavity power and detuning for
each beam. The red and blue points show both laser-cavity detuning and the intracavity power. The
dashed red and blue curves show the optical power as a function of the cavity detuning for each
beam. The driving beam dominates the quantum back-action due to the higher intracavity power
than the spring beam. c The optical spring effect. The red point represents the beam illustrated
as the red line at Δa/κ = −0.05, the blue point represents the beam illustrated as the blue line at
Δb/κ = +1.3, and the dashed green represents their sum. The dashed red and blue curves show
parametric plots of the optical spring as a function of the detuning for each beam, and the dashed
green curve is their sum. Inside the cyan flame, both the spring and the mechanical decay rates have
a positive values, and thus the mirror is stably trapped

S(2)
FF,c = 2(Bin1 − 1)�2κin1|Ga|2

(|χa(ω) + χa(−ω)|2)

+ 2(Bin2 − 1)�2κin2|Gb|2
(|χb(ω) + χb(−ω)|2) , (2.81)

where Bin1 and Bin2 are the relative shot noise levels for each beam.

2.3.2 Phase-Induced Radiation Pressure

Here, we present phase-induced radiation pressure noise [24]. Phase fluctuations of
the laser induce force fluctuations imposed on the mirror similar to that of intensity
fluctuations, if the cavity is detuned from the resonance. The detuned cavity gen-
erates phase difference between the input laser and the intracavity field, and thus
phase fluctuations of the input laser contributes to intensity fluctuations inside the
cavity. To present a detailed expression of the phase-induced radiation pressure, we
consider an intracavity field a(t), which is input to the small phase-modulated beam
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(dϕ 
 1). The intracavity field is expanded to the first order of the Bessel-functions
as below [25]

a(t) ∝ 1

κ + iΔ
+ eiΩm t/2

κ + i(Δ + Ωm)
dϕ − e−iΩm t/2

κ + i(Δ − Ωm)
dϕ, (2.82)

where Ωm is a modulation frequency, and dϕ is the phase fluctuations. We respec-
tively define e+ and e− as eiΩm t and e−iΩm t for simplicity, and then the intracavity
intensity is calculated as below,

|a(t)|2 ∝
[

1

κ + iΔ
+ e+/2

κ + i(Δ + Ωm)
dϕ − e−/2

κ + i(Δ − Ωm)
dϕ

]

×
[

1

κ − iΔ
+ e−/2

κ − i(Δ + Ωm)
dϕ − e+/2

κ − i(Δ − Ωm)
dϕ

]
,


 1

κ2 + Δ2

+ [κ − i(Δ − Ωm)]e−/2 − [κ − i(Δ + Ωm)]e+/2

[κ − i(Δ + Ωm)][κ − i(Δ − Ωm)]
dϕ

κ + iΔ

+ [κ + i(Δ − Ωm)]e+/2 − [κ + i(Δ + Ωm)]e−/2

[κ + i(Δ + Ωm)][κ + i(Δ − Ωm)]
dϕ

κ − iΔ
,


 1

κ2 + Δ2

+ −i(κ − iΔ) sin Ωmt + iΩm cos Ωmt

(κ − iΔ)2

dϕ

κ + iΔ

+ i(κ + iΔ) sin Ωmt − iΩm cos Ωmt

(κ + iΔ)2

dϕ

κ − iΔ
,

= 1

κ2 + Δ2

+ [−(iκ + Δ) sin Ωmt + iΩm cos Ωmt](κ + iΔ)

(κ2 + Δ2)2
dϕ

+ [(iκ − Δ) sin Ωmt − iΩm cos Ωmt](κ − iΔ)

(κ2 + Δ2)2
dϕ,

= 1

κ2 + Δ2

+ −2κΔ sin Ωmt + 2iΔ(−iκ sin Ωmt + iΩm cos Ωmt)

(κ2 + Δ2)2
dϕ,

= 1

κ2 + Δ2
− 2ΔΩm cos Ωmt

(κ2 + Δ2)2
dϕ, (2.83)

where, we suppose the condition of κ � Ωm. Thus, the radio of radiation pres-
sure fluctuations (zeroth-order term) to phase-induced radiation pressure fluctuations
(first-order term) is given by,



2.3 Optomechanical System 33

Sphase

Srad
= −2ΔΩm cos Ωmt

κ2 + Δ2
dϕ,

= −2Ωm cos Ωmt

κ

δ

1 + δ2
dϕ, (2.84)

where δ ≡ Δ/κ is the normalized detuning. From this equation, phase-induced ra-
diation pressure noise is negligible small if the bad cavity condition is valid. In our
measurements shown in Chap. 6, roughly only 0.3 % of the force fluctuation is due
to the phase noise.

2.3.3 Photo-Thermal Shot Noise

Here, we present photo-thermal shot noise [26, 27], which is caused by optical power
fluctuations absorbed in dielectrical reflective layers. The fluctuated power absorp-
tion makes the fluctuation of the mirror’s surface through the thermal expansion
coefficient. The photo-thermal shot noise S(2)

FF,photo−thermal is given by

S(2)
FF,photo−thermal = 2α2(1 + σ)2

�ωcTabs Pcircmω2

(ρCπr2
0 )2

. (2.85)

Here, α is thermal expansion coefficient, σ is the Poisson coefficient, Tabs is the
absorption coefficient of the 5-mg mirror, Pcirc is intra-cavity power, ρ is density of
the mirror, C is specific heat capacity of the mirror, r0 is the spot size on the mirror.
In our measurements, it is maximumly only 0.2 % of the quantum back-action.

2.3.4 Raman Decoherence

Here, we present Raman decoherence [28], which is induced by Raman scattering
of the optical pump field. To make the point clarify, the effect of the optical spring
given by Eq. (2.75) is divided into following two terms as,

1

(κ + iω)2 + Δ2 = κ2 + Δ2 − ω2 − 2iκω

(κ2 + (Δ − ω)2)(κ2 + (Δ + ω)2)

= κ2 + Δ2 − ω2 − 2iκω

4Δω

[
1

(κ2 + (Δ − ω)2)
− 1

(κ2 + (Δ + ω)2)

]
.

(2.86)

Thus, the optical damping effect (imaginary part of the optical spring) is given by

γopt = A+ − A− (2.87)

http://dx.doi.org/10.1007/978-4-431-55882-8_6
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A± = �κ|G|2
2mω(κ2 + (Δ ± ω)2)

. (2.88)

This equation is interpreted as the difference between anti-Stokes (A+) and Stokes
(A−) scattering rates, because A± define the rates at which laser photons are scat-
tered by the moving oscillator simultaneously with the absorption or emission of the
oscillator vibrational phonons [21]. Note that the Raman scattering destroy quantum
coherence of the carrier light, which is given by the sum of the anti-Stokes and Stokes
scattering rates, although two Raman scattering events has no net effect in terms of
energy. Now, let us focus on only the beam that leads to stiffening in relevant regime
of large detuning Δ � ω, in order to obtain the effective quality factor under the
Raman decoherence. This is given by

QRaman ≡ ωeff

2γRaman

 Δ

κ

ω

g

√
mωcΔ3

κPin

 Δ

κ
, (2.89)

where γRaman is defined as A+ + A−. From this equation, one can find that the large
input power and the large detuning are necessary in order to increase the resonant
frequency of the mechanical oscillator, with reducing the Raman decoherece at the
same time.
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Chapter 3
Application of Optomechanics

Abstract In this chapter, we describe how an observation of the quantum back-
action is related to the gravitational-wave (GW) detectors and test of quantum
mechanics in macroscopic domain. As for force measurements such as the GW
detectors, in which the mechanical oscillator is used as a probe of external force, its
sensitivity has almost been limited by the standard quantum limit (SQL). Also, theo-
retical analysis has proven to be a connection between reaching the SQL imposed on
the free mass (so-called free-mas SQL) and the generation of entanglement states,
even between massive mechanical oscillators, such as suspended mirrors. Because
of the massiveness (and the long relaxation time of the oscillator), such states might
have a key to solve the quantum measurement problem. Thus, optomechanics is not
only useful as sensitive probes for the weak force, but also leads to possibilities of
testing fundamental problems. Although there are some motivations for using opto-
mechanical system in the field of quantum information, let us focus on the above two
topics.

Keywords Gravitational-wavedetectors ·Back-action evasion ·Macroscopic quan-
tum mechanics · Planck mass · Measurement problem

3.1 Towards Gravitational Wave Astronomy

Gravitational waves are ripples of space-time curvature that propagate across the
universe at the speed of light. They were theoretically predicted from the Einstein
equation in the General Theory of Relativity [1]. Their existence was indirectly
proved by an observation of a binary pulsar, PSR1913+16 [2]. The observed decrease
in the period of its revolution agrees with the theoretical expectation of the orbital
decay due to gravitational radiation. There is no doubt that gravitational waves exist.
However, gravitational waves have not been directly detected yet, because of the
weakness of the gravitational interaction. On the other hand, due to the weakness,
these waves enable us to view the dark ages of the universe through direct mea-
surements. Their direct observation requires modern laser technology and highly
sensitive measurements at almost the standard quantum limit (SQL). Furthermore,
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for gravitational-wave astronomy, the GWdetection rate should be increased through
ultimate sensitive measurements beyond the (free-mass) SQL.

In the past two decades, an international array of ground-based, kilometer-scale
Michelson interferometers composed of quasi-freely suspended mirrors (shown in
Fig. 3.1), has been set up aiming at the first direct observation. The Michelson inter-
ferometer makes it possible to naturally decompose the optical fields and the cor-
responding motion of the suspended mirrors into common and differential modes.
Since theMichelson interferometer is usually operated on a dark fringe (i.e., the beam
splitter can be regarded as having a perfect reflectivity for the carrier light), ideally
only optical signals induced by the differential motion of the suspended mirrors exit
the unused port shown in Fig. 3.1. This signal enables us to measure the gravitational
waves because one can consider the gravitational waves as being tidal force imposed
on the suspended mirror [3].

These interferometric GW detectors have been operating all over the world.
GEO600 in Germany [4] is currently the only large detector taking data, while the
two LIGO observatories in the US [5] and the Virgo detectors in Italy [6] are being
upgraded to their advanced state, and KAGRA in Japan [7] is under construction.
These ground-based GW detectors target signals at audio frequencies in a band of
10Hz to 10kHz above the resonant frequency of the suspended mirror. At higher
frequencies, their sensitivity will be limited by the shot noise. The shot-noise arises
from the vacuum fluctuation of light, which enters the interferometer through the
unused port. At lower frequencies, the quantum noise will be dominated by the

Fig. 3.1 Schematic of the gravitational-wave detector. A classic Michelson interferometer as a
GW detector consists of a laser, a 50/50 beamsplitter (BS), two suspended test mass mirrors and
a photodetector (PD). The gravitational wave can be considered to be a tidal force imposed on the
mirrors, thereby shortening the length of one arm while expanding the length of the other. The
vacuum fluctuation entering from the unused port masks the GW signal because the detector is
operated at the dark fringe
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quantum back-action (radiation pressure shot noise, RPSN) from the same vacuum
fluctuation giving shot noise, but at the orthogonal quadrature phase. At any given
frequency, the spectral density of the quantum noise is the sum of those of the shot
noise, the RPSN, and a term arising from their correlation. Note that the zero-point
fluctuation of the mirror does not affect the sensitivity because the GW detectors
only pay attention to the sideband frequency above the resonant frequency of the
suspended mirror, in which the mirror can be considered to be a free mass. The
standard quantum limit (SQL) on the force measurement arises when the two noise
sources are uncorrelated [8, 9]. Therefore, the correlation between the shot noise and
the RPSN becomes a key to overcome the SQL.

3.1.1 Background of This Section

One of the most important features of future GW detectors is that they will operate
at sufficiently high laser powers such that the quantum back-action acting on the
suspendedmirrors will become a dominant force at a lower frequency band (typically
below 100Hz). The effects of the radiation pressure will be manifested mainly in two
ways in terms of the fluctuation of the pressure or the stationary pressure; the vacuum
fluctuation will drive the mirror and the light is squeezed (called ponderomotive
squeezing) through the self-phasemodulation, which increases the phase noise of the
measurement; also, the optical spring effectswill alter themechanical dynamics of the
mirrors. Although the latter has been sufficiently studied [10–12], the former has not
been observed yet on the macroscopic scale. Our result concerning the observation
of quantum back-action changed the situation, and will provide the field of the GW
detectors with a suitable platform to experimentally investigate a back-action evasion
method in order to overcome the free-mass SQL.

3.1.2 Back-Action Evasion Method

In order to overcome the free-mass SQL, there are primarily three types of techniques:
(i) creating correlations between the shot noise and the back-action noise [13, 14];
(ii) measuring the conserved dynamical quantity of the mechanical oscillator, e.g.,
momentum [15, 16]; (iii) an effective modification of the mechanical dynamics, e.g.,
using the optical spring effect created by the detuning of a signal recycling (SR)
cavity in the GW detectors (unlike our case, it creates frequency-dependent rigidity
called ponderomotive rigidity) [17–19]; and a variety of other techniques [20, 21].
Although these QND techniques have been theoretically developed, almost all of
them have not been implemented in the quantum regime because the preparation of
a platform, whose sensitivity must be limited by the quantum back-action, is very
difficult.
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Here, we introduce the first technique of creating correlations between the shot
noise and the RPSN for the QND measurement, because our setup will be suit-
able to investigate this technique. It includes: (i-i) modifying the input optics called
input (frequency-dependent) squeezing; (i-ii) modifying the output optics, called
(frequency-dependent) homodyne measurement. This technique evades the quan-
tum back-action and achieves a sensitivity limited only by the shot noise.

• Input-squeezing
Since both the shot noise and the RPSN can be attributed to the same vacuum fluc-
tuation entering the detector from the unused port, injecting a squeezed vacuum
into this port can improve the sensitivity of the interferometer. In practice, this
technique was experimentally implemented so as to reduce the shot noise using
the phase-squeezed vacuum [22]. For overcoming the free-mass SQL, however,
the required squeezed vacuum is very different, because a nearly phase-squeezed
vacuum is required for higher frequencies, at which the shot noise dominates.
However, a nearly amplitude-squeezed vacuum is required for lower frequencies,
atwhich the radiation pressure noise dominates. Tomeet the demand, the squeezing
angle should have an appropriate frequency-dependence, thereby creating the cor-
relation between the shot noise and the RPSN (i.e., it includes not only back-action
evasion, but also reduces the readout noise). Frequency-dependent squeezing can
be created using the optical cavity, which was demonstrated at around 10MHz
[23]. At around the more suitable frequency for GW detectors, it is being prepared
at MIT [24].

• Utilization of ponderomotive squeezing
Unlike input-squeezing, ponderomotive squeezing has a superb feature, i.e., it does
not need an external squeezed vacuum generator (squeezer), such as an OPO (opti-
cal parametric oscillator). However, similarly to input-squeezing, the frequency-
dependence is ideally necessary not for the squeezer, but for the readout of the
optical signal. In the conventional interferometer, shown in Fig. 3.1, the displace-
ment signal is measured in the phase quadrature, and then the anti-squeezing limits
the sensitivity. To utilize the correlation created by the ponderomotive squeez-
ing, the output signal should be appropriately read out in a frequency-dependent
quadrature, because the ponderomotive squeezing also has a frequency depen-
dence. This is because the quantum radiation pressure fluctuation in Eq. (2.79) has
no frequency dependence inside the cavity linewidth; however, the mechanical
susceptibility in Eq. (2.36) has a dependence above the resonant frequency.

3.2 Test of Quantum Mechanics

Although quantum mechanics has proven to be highly successful in explaining
physics below the microscopic scale, its validity at the macroscopic scale is still
being debated. Recent advances in technology have gradually enabled experimental
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tests of quantum mechanics at scales close to the macroscopic scale of our everyday
life [20, 25, 26]. However, the superposition of positions of macroscopic objects
beyond the Planck mass has not been observed, even though quantum mechanics
predicts it. This is at the heart of the so-called “quantum measurement problem”.
Until now, intense theoretical and experimental studies have revealed that the envi-
ronment, such as a thermal bath, plays an important role in the decoherence—the
loss of quantum interference [27–30]. Under the many-world interpretation [31], this
decoherence effect makes us understand the problemwithout any inconsistency [32].
From a positivistic point of view; however, it is not a fundamental solution, because
linear quantum mechanics cannot destroy superposition.

According to alternative approaches, on the other hand, quantum theory must
be modified in order to fundamentally solve the quantum measurement problem.
The models of such modifications, e.g., the particular gravity-related (or DP) model
[33, 34] and the continuous spontaneous localization (CSL)model [32], are designed
to induce a wave-function collapse above a critical mass scale of a given quantum
system. TheCSLmodel introduces a nonlinear stochastic addition to the Schrödinger
equation such that the new dynamic naturally breaks the superposition principle at
the macroscopic level and naturally explain the probabilistic evolution, whose ran-
dom outcomes obey the Born probability rule. “In many respects, the CSL model
can be regarded as the prime example of a broad generic class of macrorealist
modifications; it is compatible with all experimental observations to date and with
most of the symmetry principles underlying both quantum and classical mechanics”
(S. Nimmrichter et al. PRL 113, 020405-1 2014 [35]). In the CSL model, all micro-
scopic particles are continuously monitored with a rate λCSL and a spatial accuracy
(correlation length) rCSL. Another important model called the DP model explains
the effect by gravitational interaction. According to their models [33, 34], dimen-
sional analysis suggests that the quantum superpositions vanish within a timescale
of τ = �/�E , where �E is the spread of the mutual gravitational energy among
components of the quantum superposition or the self-energy of themass-distribution-
difference, respectively.

To test the effect of the collapse models, the utilization of optomechanical oscil-
lators combined with light, such as a levitated micro-sphere (e.g., satellite mission
MAQRO [36]) and suspended mirrors (e.g., gravitational-wave detectors such as
LIGO [5, 37]) have been proposed. The former system enables us to test the effect
directly via demonstration of the quantum coherence, because the cooled micro
sphere behaves like an electron in the double slit experiment. The latter system also
enables us to test the effect, because the mirror is expected to be entangled with the
laser field, and the resulting entanglement causes the position of the oscillator to be
superposed [37]. If we prepare a massive object sufficiently isolated from the envi-
ronment so that the superposition state is expected to be prepared from the viewpoint
of the quantum mechanics, we can test the unknown collapse models. Especially the
massive suspended mirror attracts considerable attention, since these models predict
that the violation of the quantum superposition principle grows with growing mass.
In following subsections, we present how we can test the models and estimate the
each requirements.
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3.2.1 Direct Test of Interference of a Massive Pendulum Via
Single-Photon Coupling

The simplest way to test of quantummechanics in themacroscopic domain is demon-
stration of interference of macroscopic objects (e.g., see in Ref. [36]). However, it is
practically impossible performing the double slit experiment using a suspended mir-
ror in order to demonstrate the quantumcoherence of the superposition state, since the
wave packet (∝ √

1/m) is too small. The single-photon coupling, on the other hand,
might create macroscopic superpositions, similarly to that presented by Schrödinger.
The basic idea used by Schrödinger for generating macroscopic superpositions was
entangling the states of a microscopic and a macroscopic system. Because it is easy
to put the state of a microscopic system into a superposed states, by interacting with
a macroscopic and microscopic system, the superposed states of the macroscopic
system can be created. In Schrödinger’s case, the microscopic system was a radioac-
tive atom, while the macroscopic system was a cat. In the case proposed in Ref. [38],
the microscopic system was a single photon, while the macroscopic system was a
mechanical oscillator such as a suspended mirror. Here, we present the requirement
if our suspended mirror is applied to the method proposed in Refs. [38, 39].

The requirement

This experiment requires; (i) the momentum imparted by the single photon has to
be larger than the initial quantum uncertainty of the mirror’s momentum such that
the interference can be observed; (ii) the mechanical oscillator has to be decoupled
from the known decoherence [here, let us consider the thermal (see Eq. (2.56)) and
the Raman decoherence (see Eq. (2.89))] over one period of oscillation; (iii) the
initial condition of the oscillator is better to be cooled down to its ground state; and
(iv) long life-time of the optical cavity for storing the single photon is necessary such
that the photon can be detected after one mechanical period. There requirements are
respectively written by

� ≡ gxzrf
ωeff

≥ 1, (3.1)

Qeff > 1, (3.2)

neff(t = 0) < 1, (3.3)

1

κ
∼ 1

ωeff
, (3.4)

where g is the optomechanical coupling constant; xzpf is the zero-point fluctuation
of the mechanical oscillator; ωeff is the effective resonant frequency of the optically
trapped mechanical oscillator; Qeff is the effective quality factor of the optically
trapped mirror; neff is the effective phonon number of the oscillator; and κ is the total
cavity decay rate for storing the single photon. In practice, above requirements can
be met individually, but they are extremely difficult to meet simultaneously. Here,
let us focus on the weak coupling regime (� < 1), and we consider the use of
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postselection technique proposed by Brian Pepper et al. [39]. In this technique, the
interferometer is locked at the dark port such that the photon can be detected only
when the suspended mirror interacts with single photon. In this case, a (maximum)
detection rate per second is given by

α = �2

4
× exp

(
− 2κ

feff

)
× feff , (3.5)

where the first term is the rate of the postselecting succeeding, the second term is the
rate of the photon remaining after a fullmechanical period for the assumedoptical loss
characterized by κ , and the last term is an inverse of the full mechanical period. The
rate is reduced by a factor of �2/4 than the case of strong coupling regime (� > 1)
since the many of events are eliminated by the postselection. Note that there are two
parameters making the trade-off between the increase of � and the increase of the
remaining photon number after a full period: (i) length of the cavity for storing single
photon, given by L , is contributed to the detection rate via change of the coupling
constant g (α ∝ 1/L2) and the change of the cavity decay rate (α ∝ exp(−1/L));
and (ii) the effective resonant frequency of the mirror is contributed to the detection
rate via change of � (α ∝ 1/ω3

eff ) and the change of the period of the oscillation
(α ∝ ωeff exp(−1/ωeff)). Because we can tune these parameters, maximum value
of the rate does not depend on the these values, and thus parameters except for
L and ωeff , e.g., mass of the mirror given by m and the finesse of the optical cavity
for storing the single photon given byF (� π/(τκ), where τ is roundtrip time) are
especially important to increase the detection rate.

• Towards the ground-state of the suspended mirror. Let us focus on the feed-
back cooling (cold damping), since the bad cavity condition is generally satisfied
if a suspended mirror is used as an optomechanical device. Because the feed-
back cooling is based on the measurement-feedback system (i.e., the oscillator
position is measured, and then it is fed back to the oscillator by applying a force
whose intensity is proportional to the oscillator’s velocity), the noise level of the
measurement must be limited by the SQL [40]. In our case of using the 5-mg
mirror, displacement sensitivity of 2 × 10−18 m/

√
Hz at 1kHz is required.

• Triangular optical cavity for creating the optical spring. To increase the res-
onant frequency of the oscillator without additional thermal noise, a triangular
optical cavity with the wavelength of 1064nm is used such that the suspended
mirror with the large gravitational dilution can be used with large intracavity
power, see also in Chap.4. The cavity parameters are as follows: finesse is 4,000;
cavity round-trip length is 10 cm; input laser power is 0.1W; cavity detuning �

is 6κ; resulting intracavity power is 7W; and the resulting effective frequency is
1kHz.

• Linear optical cavity for storing the single photon. In order to increase the
interaction time between photon and the suspendedmirror, let us consider the ultra
high finesse (6 × 107 is supposed) and the relatively short optical linear cavity
(the detection rate has peak around the cavity length of 1cm). Let us consider

http://dx.doi.org/10.1007/978-4-431-55882-8_4
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the wavelength of the single photon as 532nm, in order to increase the coupling
constant. Also similarly to that described in Ref. [38], on average 0.1 photons
go into the linear cavity such that the two-photon contribution causing noise in
interferometer has to be kept low.

• Decoherece. To decouple the suspended mirror from the thermal decoherence, the
mirror is trapped by the optical spring from 1Hz to 1kHz. Thus, natural quality
factor Qm has to be larger than 6 × 1012 × 10−6 = 6 × 106. To decouple the
single photon from the Raman decoherence, the linear optical cavity is tuned on
resonance (in the limit of � → 0, γRaman becomes zero).

• Vacuum condition. In order to reduce the gas damping enough, the experimental
setup including the suspendedmirror is set inside the vacuum tank, whose pressure
has to be under 10−4 Pa.

• Possible detection rate. By using above parameters, the detection rate becomes
three. Our assumption is now very optimistic about the finesse [41]. If it is reduced
by a factor of 10, the rate is reduced by a factor of 100, and it becomes extremely
difficult to observe the interference. Thus, the suspended mirror has to be changed
to the mirror with smaller mass in order to increase the detection rate, if the finesse
is smaller than the expected value.

3.2.2 Test of Gravity-Induced Decoherece Models by Linear
Continuous Measurement

Next approach to test the quantum mechanics in macroscopic domain is to pre-
pare/probe a conditional quantum state of the mechanical oscillator via continuous
displacement measurement [42, 43]. Conditional state is a state into which continu-
ouslymeasured oscillator is projected, and the quantumdynamics of the oscillator can
be probed by: (i) the (freely swinging) suspended mirror is continuously monitored
by laser (e.g., by locking an optical cavity), whose sensitivity must be limited by the
SQL; (ii) After the steady-state is reached, the conditional state is determined by the
noise budget usingWienar filtering; (iii) the oscillator again freely evolves by turning
off the laser such that the oscillator will be diffused both by well-known noise source
like thermal noise, and if it exists, by unknown decoherence effect like gravitational
decoherence; and (iv) after the free evolution, the growing variance is verified by the
back-action evasion method, e.g., by adopting an optimal time-dependent homodyne
detection such that the conditional quantum state can be characterized freely from
the measurement-induced back-action. The back-action evasion method allows us to
characterize the conditional quantum state below the SQL, and thus it also allows
us to test whether Gaussian entangle states between two macroscopic masses can
indeed be established [37].

With increase of the free-evolution time, the thermal decoherence will increase
the variance and eventually the entanglement vanishes, which indicates how long the
quantum entanglement can survive. If there are any additional decoherence effect,
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the variance would grow faster than the case with the well-known decoherence, and
the entanglement would vanish faster. Thus, measurement of the life-time of the
quantum entanglement can help us to understand whether there is any additional
decoherence effect, such as the models of the gravity decoherence [33, 34]. These
models respectively give the life-time as follows [44]

τD ∼
√

�ΩqL2

Gm3/2
, (3.6)

τP ∼ Ωq

Gρ
, (3.7)

where τD is the life-time for the Diósi’s model, τP is the life-time for the Penrose’s
model, L is the distance between two oscillators, G is the gravitational constant, ρ
is the density of the oscillator, m is the mass of the oscillator, and Ωq/(2π) is the
frequencies at which the quantum back-action noise intersect the (free mass) SQL. In
Ref. [44], τD = 1×10−5 s, τP = 4.3×109 s, which were obtained for GW detectors.
In our case shown in Fig. 7.2, we estimate τD and τP to be 0.07 s and 2 × 1010 s,
respectively [ρ = 2.2 kg/m3, L = 1 cm, Ωq/(2π) = 2.6 × 103 Hz and m = 5mg
are used]. Our table-top system might be possible to test the Diósi’s model similarly
to GWdetectors [43]. To distinguish thesemodels (furthermore, there aremany other
models, e.g., to see [32, 36]), it should be tested for various mass scales such that a
specific mass-dependent loss of the life-time is observed.

The requirement

The generation of the entanglement requires that the sensitivitymust be limited by the
free-mass SQL, shot noise, and quantumback-action in thewide bandwidth. The area
under the free-mass SQL,which is reachable through theQND technique, is called the
sub-SQL window. We have to realize a lowΩF and a high
x, where ΩF, andΩx are
the frequencies at which the classical force noise (e.g., the suspension thermal noise),
and the classical sensing noise (e.g., the mirror thermal noise) intersect the free-mass
SQL, respectively. For Ωx/ΩF > 2, there is a nonzero frequency band between ΩF

and Ωx, in which the classical noise is completely below the free-mass SQL. Thus,
our next goal is to prepare a cavity that satisfies this condition. In Refs. [37, 42, 44],
the logarithmic negativity [45], which characterizes the degree of entanglement of
the quantum state, is also calculated as a function of Ωx/ΩF.

3.2.3 Test of Spontaneous Wave-Function Collapse Models
Using a Classical Pendulum

Above approaches for testing quantummechanics requires the preparation of macro-
scopic superpositions such that mass-dependent loss of visibility in interference
can be directly observed. This is extremely difficult. Quite recently, Bahrami et al.
[46] suggested a different approach, which allows classical non-interferometric tests.

http://dx.doi.org/10.1007/978-4-431-55882-8_7
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They demonstrated that the random localization process predicted by the CSL (and
the DP) model inherently implies the back-action (classical momentum diffusion),
which is the testable effect. Nimmrichter et al. [35] identified the generic sensitivity
requirements for detecting the predicted the back-action caused by collapse models,
in the optomechanical setup like the GWdetector (i.e., the force fluctuation acting on
the oscillator is continuously measured in the free-mass limit). They found that the
power spectral density of the spontaneous momentum diffusion caused by the CSL
can be given by (in Ref. [35], spectral density for the DP model is also calculated)

S(2)
FF,CSL = λCSL

(
�

rCSL

)2

α ≡ DCSL, (3.8)

whereα is amass-dependent geometry factor [35], �̃(k) is theFourier transformof the
mass density normalized to the total mass given by �̃(0) = m. For the perpendicular
momentum diffusion of a disk, whose thickness d and radius are much larger than
rCSL, DCSL is given by [47]

DCSL = λCSL
�
2

m2
0

4πr2CSL
�m

d
, (3.9)

where m0 is the standard atomic unit. Lajos [47] further elucidate and simplify
these considerations, and he found that a certain spontaneous increase �TC SL (the
spontaneous heating effect) of the equilibrium temperature, which is produced
by the classical momentum diffusion caused by the CSL models, is given by (in
Ref. [47], the heating effect for the DP model is also calculated)

�TCSL = DCSL

mkB
τ, (3.10)

where τ = 2/γm is the (energy) relaxation time of the mechanical oscillator. From
this equation, the heating effect proportional to the relaxation (ring-down) time and
independent of the mass.

The requirement

To measure the diffusion given by Eq. (3.8), the SQL must be smaller than the pre-
dicted diffusion, whose condition gives

�SQL ≡ r2CSLω
2

�

m

α
< λCSL. (3.11)

Here, the measurement frequency ω is supposed to be larger than the effective res-
onant frequency of the mechanical oscillator (i.e., we consider the SQL as the free-
mass SQL). From this equation, one can estimate that the reachable bound on the
collapse rate λCSL, and the detailed reachable bound, if our system is used, is given
in Ref. [35].
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To measure the heating effect given by Eq. (3.10), the accuracy of measuring
the effective temperature of the mechanical oscillator has to be better than the
heating effect. The thermal noise floor level for the high-Q oscillator is given by√
2πkBTth/(mω3

m) having the unit of m/
√
Hz, since the root mean square of the

thermal motion is given by kBTth/(2km). The floor level is 5 × 10−9 m/
√
Hz if the

condition with m = 5 mg, fm = 1Hz, and T = 300K are considered. In this case,
relatively large heating compared with the value used in Ref. [47] [τ is (6× 10−6)−1

for our suspended disc] is predicted because the relaxation time of the mechanical
oscillator can be increased by increasing the gravitational dilution (i.e., increasing the
length of the suspension wire); however, the accuracy of measurement is extremely
demanding because the noise floor is extremely lower than the back-ground seis-
mic motion typically given by factor of 10−7 m/

√
Hz at 1Hz. Furthermore, passive

seismic isolation system is also difficult at the resonant frequency of 1Hz. Active
control can in principle reduce the back-ground seismic motion under the thermal
floor level. The floor level is 1 × 10−10 m/

√
Hz if the condition with m = 5mg,

fm = 10Hz, and T = 300 K are considered. In this case, relatively small heating
compared with the value used in Ref. [47] [τ is (6 × 10−6)−1 for our suspended
disc] is predicted because the relaxation time of the mechanical oscillator is reduced
by reducing the gravitational dilution (i.e., decreasing the length of the suspension
wire); however, the accuracy ofmeasurement can be easily increased because passive
seismic isolation system can greatly reduce the seismic motion at 10Hz, even if the
noise floor is lower than the back-ground seismic motion typically given by factor
of 10−9 m/

√
Hz at 10Hz.
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Chapter 4
Optical Torsional Spring

Abstract One of the key milestones toward the SQL is the development of the
mechanical oscillator driven by the quantum back-action. However, the quantum
back-action acting on the massive objects beyond the Planck mass (∼22µg) had not
yet been observed because strong thermal fluctuating forces induced by the environ-
ment usually dominate measurements. To reduce the environmental noise, making
the pendulum is suitable for allowing the mirror to be isolated from the environment.
Although this isolation can largely reduce the noise, a stationary radiation pressure
of the light exposes the free mass to instability if a linear optical cavity is used.
This technical limitation had been a significant issue since there is a fundamental
compromise between the technical limitation and the sensitivity; sufficient tolerance
with firm suspension makes the mass differ from the free mass, which results in an
increase of the thermal fluctuating force. In this chapter, we present how by using
a triangular optical cavity it is possible to overcome this limitation. The relevant
publication is Opt. Express 22 12915 (2014) (Matsumoto, Michimura and Aso, Opt.
Express 22:12915, 2014, [1]).

Keywords Triangular optical cavity · Positive torsional optical spring ·
Siddles-Sigg instability · Gravitational dilution

4.1 Trade-Off Relationship

The positive torsional spring effect is the key effect in our experiment because it
enables us to use the large gravitational dilution effect (See Chaps. 5 and 6). This
effect was independently discovered by Sigg [2] and myself. Unlike a linear cavity,
light experiences odd numbers of reflections on mirrors inside a triangular cavity.
This results in a positive torsional spring effect. Figure 4.1 enables us to intuitively
and visually understand the difference between the linear and triangular optical cav-
ities. Although one can calculate the optical positive torsional effect using the result
described in Ref. [3], we use the result described in Ref. [2] for simplicity. Also, we
describe an experimental demonstration of the effect.
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(a) (b)

Fig. 4.1 Schematic of optical torsional effects. The schematic responses of the optical axes to the
angular motion of the movable mirror are shown. The detailed response for the triangular cavity is
given in Ref. [3]. An optical torque occurs through the stationary radiation pressure. a In the case of
the linear optical cavity, the optical torque occurs in the same direction as the angular motion. This
results in an anti-restoring force. b In the case of the triangular optical cavity, the optical torque
occurs in the opposite direction as the angular motion. This results in a restoring force

Firstly, we explain the trade-off relationship between the stability and the sen-
sitivity, which is generated if an optical linear cavity, which consists of the mirror
suspended by a single wire, is used. In order to reach the SQL, the force noise
must be dominated by the quantum back-action; however, measurements are usually
dominated by strong thermal fluctuating force, whose power spectrum is given by

S(2)
FF,th = 4kBT γmm. (4.1)

Here, kB is the Boltzmann constant and T is the temperature. Thus, reaching the SQL
needs the condition:

Rs = S(2)
FF,q

S(2)
FF,th

= |Gopt|2
(nthκγm)

> 1, (4.2)

where nth is the phonon occupation number. To reduce the thermal noise, one can
freely suspend a massive mirror in order to allow the mirror to be isolated from the
environment. The pendulum motion of the suspended mirror is dominantly trapped
by the gravitational potential, and thus the dissipation of the pendulum is gravita-
tionally diluted by a factor of kgrav/kel = 4l

√
mg/πY/r2 (in this paper, we call it “Q

enhancement factor”) [4], where kgrav and kel are respectively the gravitational and
elastic spring constants of the pendulum, m is the mass of the mirror, l is the length of
the wire, r is the radius of the wire, Y is the Young’s module of the wire, and g is the
gravitational acceleration. From Eq. (4.1), any reduction of the dissipation results in
a reduction of the thermal fluctuation force, which also drives the mechanical motion
similarly to the quantum back-action, by a factor of kgrav/kel.
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This isolation largely reduces the suspension thermal noise; however, a sta-
tionary radiation force of the light exposes the free mass to instability through
an optical torsional anti-spring effect as shown in Fig. 4.1a, which is given by
κopt = −Pcirc L round/c, in conventional experiments utilizing a linear optical cavity
[5, 6] (we suppose that the g-parameter closes to zero, which results in the small-
est anti-restoring force). Here, Pcirc is the intra-cavity power, L round the round-trip
length of the cavity, and c the speed of light. The stable condition concerning both
the mechanical restoring force of the wire κwire and the optical anti-restoring force
κopt is given by

κwire + κopt > 0. (4.3)

Thus, πGc/(2l L round) > Pcirc/r4 must be satisfied in the case of using a single wire
to suspend, where G is the modulus of rigidity of the wire. Thus, the enhancement
of Rs due to the gravitational dilution is limited by

Qen <

√
G

Y
8lmg

1

τ Pcirc
=

√
2lmg

(1 + σ)

κ

Pin
. (4.4)

Here, Qen is the Q enhancement factor, and τ is the round-trip time, σ is the Poisson’s
ratio, and Pin is the input laser power. The ratio of Rs in the case of using the linear
cavity is plotted as a function both of the input laser power and the Q enhancement
factor in Fig. 4.2a.
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Fig. 4.2 The square root of the ratio of the quantum back-action to the thermal fluctuating force.
a Trade-off relationship between the sensitivity and the stability is generated, in the case of
using a linear cavity. A white domain represents the area, where κwire + κopt < 0. Parameters:
l = 0.02 m, m = 14.7 mg, σ = 0.28, T = 300 K, and κ/(2π) = 1.39 MHz. Here, we suppose that
each dissipation mechanisms are due to viscous friction (frequency dependent friction), for sim-
plicity. In addition, we suppose that the intrinsic quality factor of the wire of Qin is 3,800 (i.e.,
Qm = Qen × Qin), and it has no dependence of the radius of the wire. b As for a triangular cavity,
the square root of the ratio is plotted. The ratio of Rs becomes one at the boundary of blue and red
domains. In the blue domain, there is a possibility to reach the SQL. The same parameters as in
Fig. 4.2a are used, but there is no unstable domain. In addition, the incident angle of β is supposed
to be 0.64 rad
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4.2 Model of a Triangular Optical Cavity

Here, we present the torsional spring effect around the suspension axis (yaw) due
to the radiation-pressure torque in a triangular cavity. We use Sigg’s result [2], and
begin by considering a two-dimensional triangular cavity formed by two flat mirrors,
labeled Ma and Mc, and a curved mirror, labeled Mb, as shown in Fig. 4.3. We decom-
pose the rotations of the two flat mirrors into two basis modes: the common-mode
(same the rotation direction, the same amount) and the differential-mode (opposite
rotation direction, the same amount). Any misalignment state of the two mirrors can
be expressed as a linear combination of these two basis modes. In this picture, the
relationship between the misalignment angle, �α, of the basis modes and the change
in beam position on each of the mirror, �x , is given by [2]

�x = L Kh�α (4.5)

with

Kh = 1

L(d + L − R)

⎛

⎜⎝

−2d(L−R)

cos β
0 −√

2d R
cos β

0 −2L(d+L−R)

cos β
0

−√
2d R 0 (d + L)R

⎞

⎟⎠ . (4.6)

Here, L is the distance between the curved mirror and the flat mirror, d is half the
distance between the two flat mirrors, R is the radius of curvature of mirror Mb, and
β is the incident angle on the flat mirror. The torque, Nrad, on each mirror induced
by the radiation pressure is given by

Fig. 4.3 Schematic of the
triangular cavity. This figure
represents the layout of the
triangular cavity. The
triangular cavity formed by
two flat mirrors, labeled Ma
and Mc (the movable
mirror), and a curved mirror,
labeled Mb. L , represents the
distance between the curved
mirror and the flat mirror; d
is half the distance between
the two flat mirrors, R is the
radius of curvature of mirror
Mb, θ is the incident angle
on the curved mirror, and β

is the incident angle on the
flat mirror
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Nrad = 2Pcirc

c
LT Kh (4.7)

with

T =
⎛

⎝
cos β 0 0

0 cos β 0
0 0 cos θ

⎞

⎠ , (4.8)

where c is the speed of light in a vacuum, Pcirc is the circulating power in the triangular
cavity, θ is the incident angle on the curved mirror, and β is the incident angle on the
flat mirror. When the acute-angled isosceles triangular optical cavity with a positive
g-factor is considered, the optical spring constant is always positive, because all
eigenvalues of Eq. (4.7) become negative [2]. This suggests that the triangular cavity
is intrinsically stable in the yaw direction.

For simplicity, let us consider the situation where only the mirror Ma is movable
and others are fixed. In this case, the equations of motion are given by

Iaα̈a = −(kt,opt + kt,m)αa, (4.9)

kt,opt ≡ − Pcirc

c
l cos β (Kh(1, 1) + Kh(2, 2)) ,

= −2Pcirc L

c

(d + L)[R − (L + d L/(d + L))]
L(d + L − R)

, (4.10)

where Ia is the moment of inertia about the wire axis of mirror Ma, kt,opt is the
angular spring constant of mirror Ma induced by the radiation pressure, and kt,m is the
mechanical torsional spring constant of mirror Ma in yaw. Under the self-consistent
condition of the cavity, which is given by 0 < d + L < R cos(θ), Eq. (4.10) is always
positive. Therefore, this configuration has intrinsic stability in the yaw direction.

From this equation, we can derive the resonant frequency of the yaw motion as

fa = 1

2π

√
kt,opt + kt,m

Ia
. (4.11)

From Eqs. (4.10) and (4.11) it is found that the angular resonant frequency is increased
with increased circulating power.

4.3 Experimental Setup

In order to quantitatively verify the model described in the previous section, we
measured the angular resonant frequency of a mirror, which is a part of a triangular
optical cavity. By varying the incident laser power, thus varying kt,opt, we expect the
resonant frequency to vary according to Eq. (4.11).
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Fig. 4.4 Detailed experimental setup for observing the optical torsional spring effect. The laser
beam (red line) was fed into the triangular cavity. An electro-optic modulator (EOM) was used to
apply frequency sidebands for a Pound-Drever-Hall (PDH) method. Light was detected at various
points using photodetectors (PD). HWP, Half-Wave Plate; QWP, Quarter-Wave Plate; FI, Faraday
Isolator

Fig. 4.5 Photograph of the
experiment for observing the
optical torsional spring effect

A schematic of the experimental setup is shown in Fig. 4.4, and its photograph
is shown in Fig. 4.5. The laser source was a monolithic non-planar Nd:YAG ring
laser with a 2 W continuous-wave single-mode output power at 1064 nm (Coherent
Inc., Mephisto). We used an electro-optic modulator (EOM) as a phase modulator
at 15 MHz (Newport Inc., model 4003) to lock the triangular cavity using a Pound-
Drever-Hall (PDH) locking method. (The EOM is made up of a LiNbO3 crystal
and a tank circuit tuned at 15 MHz, and was driven by a commercial oscillator at
15.000 MHz.) The triangular optical cavity with a finesse of 223 and a round-trip
length of 100 mm was composed of two flat mirrors and a fixed curved mirror with
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a radius of curvature of 75 mm. A part of two flat mirrors was a half-inch fused
silica mirror suspended by a tungsten wire of 40 mm in length and 20µm in diam-
eter. The suspended mirror was attached to an oxigen-free copper cylinder of 3 mm
in diameter and 3 mm in thickness, which was damped by an eddy-current by a
doughnut-shaped magnet. Because of its shape, the magnet can in principle damp
only the pendulum motion without decreasing the mechanical quality factor of the
yaw motion. The (natural) resonant frequency of the yaw motion was measured to be
369 mHz, by optical shadow sensing. The curved mirror was fixed, and was mounted
on a piezoelectric transducer (PZT; NEC Tokin, AE0505D08F), which was used as
an actuator to keep the cavity in resonance with the laser. The triangular optical cav-
ity and photo-detectors (HAMAMATSU, G10899-01K, InGaAs photodiode) were
placed in a vacuum desiccator (ASONE, 1-070-01) for acoustic shielding.

The reflected light was detected by a photo-detector, and its output signal was
demodulated at the modulation frequency. This signal was low-pass filtered with a
cutoff frequency of 1 Hz, and fed back to the PZT actuator. The unity gain frequency
for the length-control was about 1 kHz. We used this signal to stabilize the cavity
length, and also to measure the angular (yaw) resonant frequency. The yaw motion
of the suspended mirror generated the PDH signal, since there was a slight mis-
centering of the beam position on the suspended mirror. The transmitted light was
also received in order to measure the intra-cavity power. The incident laser power
into the cavity was changed from 60 mW to 1 W, in order to measure the change in
the angular resonant frequency.

4.4 Experimental Results & Discussions

Figure 4.6a shows the observed spectra of the feedback signal with the intra-cavity
power at 4, 32, 46 and 68 W. The peaks at around 0.4 Hz are the yaw resonances.
The angular resonant frequency increases with increasing circulating power. The
measured angular resonant frequencies are plotted against the intra-cavity power in
Fig. 4.6b. The blue circles are the measured values and the horizontal lines are the sta-
tistical errors. The dashed red curves are the theoretical predictions, obtained from
Eqs. (4.10) and (4.11) with l = (4.4 ± 0.1) × 10 mm, d = (1.0 ± 0.1) × 10 mm,
β = 0.7 ± 0.1 rad, kt,opt = (3.9 ± 0.2)× 10−10 × Pcirc Nm/rad, Ia = 6.6 × 10−9 kgm2,

and kt,m = 6.0 × 10−8 Nm/rad. The theoretically calculated values show good
agreement with the experimental results, which suggests that Eq. (4.10) is suitable
for modeling the torsional spring effect caused by the optical restoring force.

Until now, we have only paid attention to the yaw. Note that this is a sufficient
discussion in order to consider the stability of our triangular cavity. Because the
suspended mirror can easily have sufficient mechanical positive torsional spring
constants for a pitch without increasing the suspension thermal noise, even though the
anti-torsional spring effect occurs for the pitch. This is due to the fact that the stiffness
of the pitch does not depend on the radius of the wire, which mainly determines the
dilution factor, but depends on the radius of the mirror.
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(a) (b)

Fig. 4.6 Optical torsional spring response for various power levels. a Observed spectra of the
feedback signal. The peaks correspond to the yaw resonance of the suspended mirror with the intra-
cavity power (4 W(blue), 32 W(red), 46 W(green) and 68 W(cyan)). b Angular resonant frequency
of the mirror suspension against the intra-cavity power. The blue circles are the measurement data
and the blue horizontal lines are the statistical errors. The solid red curve is the theoretical prediction
obtained from Eqs. (4.10) and (4.11) and the dashed red curve shows the systematic error

From this result and the following consideration, the advantage of the triangular
cavity is verified. If the linear cavity is used, the instability can be mitigated, e.g., by:
(i) decreasing the optical power; (ii) shortening the cavity length; (iii) using a thick
wire for suspension; (iv) using multiple wires for suspension; (v) active control; and
(vi) using a linear optical cavity that consists of fixed and suspended mirrors under the
negative-g condition (i.e., both focal points are inside the cavity; in other words, both
mirrors have a concaved structure). However, those respectively induce: (i) decrease
of the quantum back-action; (ii) no issue; however, in practice it is insufficient only
by it; (iii) decrease of the gravitational dilution (i.e., increase of the suspension
thermal noise); (iv) introducing an unexpected thermal noise through the unexpected
normal mode generated by the complicated suspension system [7]; (v) the necessity
of using a more lager mirror to be attached along with the actuator, which would
result in decrease of the quantum back-action (i.e., relatively increases all technical
noise), and also might introduce some other dissipation through the actuator [to avoid
these issues, using the lossless control system via radiation pressure without attached
actuators was proposed [8]]; and (vi) the necessary of using a sufficiently concaved
and small mirror to make the cavity length shorten (as a supplemental explanation,
the linear cavity demands the condition given by 0 ≤ (1 − L/R1)(1 − L/R2) ≤ 1,
where L is the cavity length, R1 is the curvature of the one mirror and R2 is the
curvature of the other mirror) and avoid the same issue of (v). (If an appropriate
mirror can be manufactured, this method has no issue. We have been trying, but it is
still challenging.) On the other hand, the triangular cavity has an intrinsic stability
for yaw motion. Thus, one can conclude that the triangular cavity overcomes the
fundamental compromise between the sensitivity and the instability for the linear
optical cavity.
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Chapter 5
Experimental Setup

Abstract In this chapter, we describe an experimental setup, e.g., the 5-mg
suspended mirror, geometry of the optical cavity, vibration isolation system, laser
source, calibration method, detection and vacuum system. Figure 5.1 shows the dis-
placement noise due to the quantum back-action that sets our goal of sensitivity in
displacement measurement. At the resonant frequency of the pendulum (130 Hz is
supposed), the displacement noise is approximately 1 × 10−12 m/

√
Hz. Every com-

ponent has to be specially designed to achieve the sensitivity needed to detect the
quantum back-action. Especially, we explain how to measure the back-action using
the optically coupled oscillator in detail because it is the special case where the feed-
back force for length control is transferred to the 5-mg suspended mirror via the
optical spring effect. The relevant publication is Phys. Rev. A 92, 033825 (2015) [1].

Keywords 5-mg massive pendulum · Seismic isolation system · Calibration of the
optically coupled oscillator

5.1 All Aspects of the Experiment

In this section, we describe all aspects of the experiment: both the experimental setup
and the technical features.

Experimental Setup

The schematic of the experimental setup is shown in Fig. 5.2, and its photograph is
shown in Fig. 5.3. Our optical cavity had a triangular configuration constructed from
one movable mirror (mass, 5 mg; shown in Fig. 5.4), one half-inch fixed mirror, and
one half-inch suspended mirror with a coil-magnet actuator attached onto its alu-
minum mirror holder for cavity length control (mass, 1 × 102 g; radius of curvature,
2 × 102 mm) (Figs. 2.5a and 5.2). The 5-mg mirror was suspended by a tungsten wire
of 5 cm in length with 3µm in diameter, attached to the mirror with epoxy resin. On
the top of the wire, a picomotor-actuated stage for yaw alignment was attached. The
fixed mirror and the controlled mirror had picomotors for both pitch and yaw align-
ment. Also, there were two picomotor-actuated folding mirrors for aligning each
incident beam. These adjustment mechanisms allow us to align the optics inside the
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Fig. 5.1 Goal sensitivity for observing the quantum back-action. The quantum back-action (blue),
the suspension thermal noise (red), the mirror thermal noise (green), the laser frequency noise
(cyan), the SQL for the free mass (dotted black) and the SQL for the modified mirror (black line)
are shown

vacuum chamber remotely. The triangular cavity, which was suspended by a double
pendulum on a double-stage pre-isolation stack, was installed in a vacuum chamber
(1 × 10−3 Pa) in order to sufficiently reduce any seismic motion, acoustic vibration,
gas damping and so on.

The shape of the optical path of the cavity was an isosceles triangle, which had
round-trip length of L = 8.7 ± 0.2 cm. The incident angle to the movable mirror,
β, was estimated to be cos β = 0.75 ± 0.04. The (amplitude) optical total decay
rate was κ/(2π) = (1.181 ± 0.003) × 106 Hz, i.e., finesse of the cavity was (1.47 ±
0.03) × 103, and (amplitude) decay rate for the fixed mirror and the controlled mirror
were κin1/(2π) = (8.7 ± 0.3) × 105 Hz, and κin2/(2π) = (0.44 ± 0.05) × 105 Hz.
The optomechanical coupling constant was g/(2π) = (2.8 ± 0.2)ωc/m, where ωc is
the cavity resonant frequency.

The Nd:YAG laser source at the operational wavelength of 1064 nm was used,
and the whole input optics system was covered by a sound-proof acryl box so as
to reduce any jitter of the input beams. Two beams split from the same laser source
were injected into the cavity in the same spatial mode, but in opposite directions. One
of the two beams was injected from the controlled mirror in a clockwise direction
(illustrated as the blue line in Fig. 5.2), and the other one was injected from the fixed
mirror in a counterclockwise direction (illustrated as the red line in Fig. 5.2). The
beam illustrated as the red was frequency shifted by 80 ± 3 MHz with an AOM
and phase modulated in 15 MHz with an EOM, while the beam illustrated as the
blue was frequency shifted by 80 MHz with the other AOM in the double pass
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Fig. 5.2 Detailed experimental setup for observing the quantum back-action. The beam illus-
trated as red line and the beam illustrated as blue line were fed into the triangular cavity in the
same spatial mode, but in different directions. Acousto-optic modulators (AOM) were used to shift
the laser frequency. An electro-optic modulator (EOM) was used to apply frequency sidebands for
the PDH method. Light was detected at various points using photodetectors (PD). HWP, Half-Wave
Plate; QWP, Quarter-Wave Plate; FI, Faraday Isolator

configuration. The beam illustrated as the blue was injected into the cavity when the
cavity linewidth (decay rate) was measured by sweeping the laser frequency across
the optical resonance. A portion of the beam illustrated as the red was picked-off and
detected by a photo-detector with a high quantum efficiency (Perkin Elmer, C30632,
InGaAs photo-diode) to monitor intensity fluctuations of the laser.

The beam illustrated as the red was injected into the cavity, and the cavity reflected
beam was detected with the fast-responding PD (PD3; HAMAMATSU, G10899-
01K, InGaAs photo-diode). The output of this PD was demodulated with a 15 MHz
RF signal to obtain the cavity length signal. We used this signal for cavity length
control, and also to extract a quantum back-action signal. One of the transmitted
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Fig. 5.3 Photographs of the experiment for observing the quantum back-action
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Fig. 5.4 Mechanical oscillator. The mirror was manufactured by SIGMA KOKI. It has a radius of
2 mm, a thickness of 0.2 mm, and a mass of 5 mg. A tungsten wire of 3µm diameter and 50 mm
length was attached to the mirror with epoxy resin. In both side and front views, it appears to be
much larger than the real size of the tungsten wire because of an overexposure of the camera. The
enlarged view photographed by a stereoscopic microscope (Olympus, SZ61) shows the interface
between the wire and the mirror. Scale bars, 4 mm in both side and front views, and 0.2 mm in
an enlarged view. Reprinted with permission from Ref. [1]. Copyright 2015 by American Physical
Society

beams from the cavity was monitored by CCD1 or PD4 (flipped by a flipped mirror),
and the other one was eventually rejected at the Faraday isolator.

In order to stabilize the intensity of the laser beam, we have to take into account
the vacuum fluctuation, δâ1 and δâ2, inevitably injected from the open ports of BS1
and B2, respectively. Because the vacuum fluctuation, δâ1, has an anti-correlation
between an in-loop (PD1) and an out-of-loop (PD2), a correlation between the laser
intensity fluctuation and the vacuum δâ1 will be generated in the out-of-loop after
stabilization (See Appendix). This results in increasing the noise level in out-of-loop,
which is so-called “noise penalty” [2]. In addition, a possible minimum relative to
the shot noise level in out-of-loop is also limited by the uncorrelated vacuum, δâ2.
Thus, the power injected to the photodetector (PD1; in-loop) used for the inten-
sity stabilization was two-times larger than the power injected to the photodetec-
tor (PD2; out-of-loop) for monitoring the intensity fluctuation. This power balance
allows intensity stabilization of the beam at a relative shot-noise level of 1.8 dB.
There were picomotors-actuated mirrors before these two PDs so as to adjust the
position of the beam spot on the detectors in order to find the spot position where
the effect of the beam jitter is minimized. The incident angles to these two PDs were
adjusted to the Brewster angle in order to minimize the effect of the back scattering.
The detailed analysis will be presented in Appendix.

Technical Features

There are two main technical features in our experiment: an extremely thin suspension
wire, and the triangular geometry of the optical cavity. The thin wire assures that the
amount of energy stored in the pendulum is dominated by the gravitational potential
over the elastic bending energy of the wire [3]. Since any loss of the energy is only
associated with the elastic part of the stored energy, the total mechanical loss of
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the pendulum is diluted with gravity by a factor of kgrav/kel = 4l
√

mg/πY/r2 =
6 × 102, where kgrav and kel are the gravitational and elastic spring constants of the
pendulum, r is the radius of the wire, l is the length of the wire, m is the mass of the
mirror, Y is the Young’s module of the wire, and g is the gravitational acceleration.
Any reduction of the loss results in a reduction of a thermal fluctuation force, which
also drives the mechanical motion similarly to the quantum back-action, by a factor
of

√
kgrav/kel.

The radiation pressure of the light induces a torque on the mirror when it is rotated.
In a suspended linear cavity, this torque works as an optical anti-torsional spring,
which causes a mechanical instability (so-called Sidles-Sigg instability [4, 5]). This
is especially a serious issue because the mirror is suspended by the thin wire in order
to reduce the thermal noise, which provides a small mechanical torsional spring con-
stant (kt,m � 3 × 10−11 Nm/rad) to compete against the optical anti-torsional spring.
Because the gravitational dilution is increased with decreasing the radius of the wire,
the trade-off relationship between the intra-cavity power (the quantum back-action
level) and the radius of the suspension wire (suspension thermal noise level). The
detailed expression of the above trade-off is given in Chap. 4. In order to circumvent
this limitation, we used a triangular cavity, which has a positive optical torsional
spring, and exhibits no instability in the rotation around the suspension axis. In our
setup, the optical torsional spring constant is kt,opt = +1 × 10−9 Nm/rad, whereas it
is k(linear)

t,opt = −1 × 10−9 Nm/rad for a linear cavity with otherwise the same scale and
power. We succeed in storing about 50-times higher optical power in our cavity than
the instability limit for the linear cavity, while the dilution factor becomes about 600.

5.2 Partial Aspects of the Experiment

In this section, we present a mechanical oscillator (a suspended mirror consisting of
a mirror and a tungsten wire), an optical system (geometry of the cavity and the laser
source), calibration, a detection system, and a vacuum system.

5.2.1 Mechanical Oscillator

• Details of the mechanical oscillator
The mechanical oscillator is one of the key components in our experiment because
it mainly determines the magnitude of the quantum back-action in terms of both the
mechanical susceptibility and the optical power gain inside the cavity. In addition
to the signal level, it also determines the noise level of the suspension thermal
noise through material dissipation and gravitational dilution (shown in Fig. 5.1). It
is the main noise source driving the mechanical oscillator, similarly to the quantum
back-action. To reduce the difficulty for detection, the mechanical oscillator was

http://dx.doi.org/10.1007/978-4-431-55882-8_4
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designed to have a low mass (5.0 mg), a high (power) reflectivity (the designed
values are 0.99957 for p-polarized light and 0.99997 for s-polarized light), and
a low mechanical loss of the pendulum (the measured value is Qpend = (3.2 ±
1.0) × 105; see in Chap. 6). The low mass was achieved using a thin (the radius
was 0.2 mm) flat mirror. [Furthermore, the flat mirror reduces the noise, which is
leaked from the residual side-motion (i.e., orthogonal to the pendulum).] Unlike
a conventional linear optical cavity, the geometrical advantages of a triangular
cavity enables us to stably trap the flat mirror due to the optical torsional spring
effect. (In general, the dissipation of substrate material, which is related to the
mirror thermal noise, increases as the object becomes thin due to only surface loss.
Thus, we estimate that its mechanical quality factor of the substrate is 105. This
is relatively lower, but is sufficient to observe the quantum back-action, partially
because of an enhancement of the quantum back-action through the lightening.)
The low mechanical loss of the pendulum was achieved by using an ultra-thin wire
(the radius was 1.5 um) to suspend the mirror, and high reflectivity was achieved
using Ion Beam Sputtering (IBS) to coat it.

• Dimensions and spot size
The dimensions of the triangular cavity and the spot size on the movable mirror are
important factors in terms of frequency noise of the laser and any mirror thermal
noise, respectively. By designing the path length (the spot size) to be as small
(large) as possible, there sensing noises are depressed. We set the cavity round-
trip length as short as possible, about 9 cm, from the viewpoint of easy handling.
The beam radii on the movable mirror and on the controlled mirror, as determined
by the cavity parameters, were 110 um and 178 um, respectively. Based on the
choices of the cavity length, the substrates of the thin mirror and of the beam spot
sizes, the theoretical frequency and thermal noise levels are shown in Fig. 5.1.

• Vibration isolation system
Seismic noise is the most serious problem in the low-frequency region (i.e., the
vibration level is about 10−7/ f 2 m/

√
Hz above 1 Hz on our laboratory) because

it is not only increased, but also becomes difficult to be mitigated using passive
filter, such as a pendulum. The other seismic motions, such as a bobbing motion
of the pendulum, leaks into the direction of the beam axis through asymmetries of
the isolation system. Therefore, a sufficient level of attenuations for all degrees of
freedom has to be achieved as well. To meet this criteria, the isolation system was
made of two parts: a double pendulum and a double stack.
Figure 5.5 shows the suspension system designed for this experiment. The trian-
gular cavity was placed on a platform made of aluminum, which was suspended
by the double pendulum on a double stage pre-isolation stack. Common-mode
rejection of seismic noise is expected by using the common platform for the trian-
gular cavity. The intermediate ring mass (made of copper) of the double pendulum
was also suspended with three tungsten wires (radius of 150 um) and vertical
coil springs. For the purpose of damping, another larger intermediate ring mass
(made of steel) with strong magnets was suspended next to the (smaller) interme-
diate mass of copper. In order to avoid any re-injection of seismic noise from the

http://dx.doi.org/10.1007/978-4-431-55882-8_6
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Fig. 5.5 Double-pendulum system

damping magnet, the intermediate mass of steel was also isolated from any seis-
mic motion. In order to decouple the seismic motion from other degrees of free-
dom, the slope of the platform of aluminum was adjusted using x-y-z stages,
which were attached onto stages located on the top of the double pendulum. Then,
the slope of the intermediate mass of steel was also adjusted by using the other
x-y-z stages, which were attached on stages in order to decouple the eddy-current
damping from other degrees of freedom. The double-pendulum system theoreti-
cally provides 160 dB of isolation at the resonant frequency (around hundred Hz)
of the movable mirror in the horizontal plane. In the vertical plane, the coil springs
provide 80 dB of isolation at the resonance.
The pre-isolation stack, designed and constructed by Kenji Numata [7], can pro-
vide further isolation for all degrees of freedoms, although the double pendulum
ensures sufficient isolation. The stack was composed of two stainless-steel blocks,
separated by isolation rubbers. The isolation performance of this stack was also
measured by Numata using a vibration exciter. It was better than 70 dB for the
vertical direction, and 80 dB for horizontal direction at resonance [7].
The total performance of this suspension and the stack system is estimated by mul-
tiplying the simulated isolation ratio of the suspension and the measured isolation
ratio of the stack to 150 and 240 dB. The required level of displacement noise was
very likely achieved.

5.2.2 Laser Source

As a laser source we used a monolithic non-planar Nd:YAG ring laser with 2 W con-
tinuous wave single-mode output power at 1064 nm [8]. The wavelength is the most
common choice in the current GW detectors. Nonplanar ring oscillators (NPROs) are
monolithic lasers where the laser radiation circulates along a nonplanar ring in a sin-
gle laser crystal. This is believed to give the best performance as a continuous-wave
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Fig. 5.6 Intensity fluctuations of the laser. The measured spectra of the intensity fluctuation of the
input laser. Left vertical axis indicates the relative intensity noise level (RIN), and the right side
indicates the relative shot noise level (RSNL). Spectral peaks are identified as power line harmonic.
Reprinted with permission from Ref. [1]. Copyright 2015 by American Physical Society

laser. The laser intensity can be modulated by applying a voltage signal to its cur-
rent actuator. Our intensity stabilization shown in Appendix was done by using this
actuator. The tuning efficiency was measured before its installation into the injection
bench of our setup.

Figure 5.6 shows the measured intensity fluctuations of the free-running laser,
which is divided by the incident laser power and its shot-noise-level, respectively.

5.2.3 Calibration

Here, we present calibration of the pendulum’s displacement (or force acting on
the pendulum), which is based on the three points: (i) efficiency of the coil-magnet
actuator for the cavity-length control (from the voltage to force conversion factor);
(ii) relationship between the round-trip length and the pendulum motion of the sus-
pended mirror; and (iii) open-loop compensation of the cavity-length control system.

• Actuator efficiency. In order to calibrate the displacement noise spectrum from the
voltage signal, we measured the actuator efficiency and determined the voltage-
to-force conversion factor. Here, we present measurement of the factor using a
Michelson interferometer.
Figure 5.7a shows the configuration used to measure the actuation efficiencies.
We locked the Michelson interferometer using a PD, an appropriate servo circuit
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(a) (b)

Fig. 5.7 Measurement of the efficiency of the coil-magnet actuator. a Experimental setup. The laser
beam was fed into the Michelson interferometer (MI). Light was detected using a photodetector
(PD), and the MI was locked at the mid-fringe point. b Measured open loop transfer functions of the
displacement control are shown as blue points, while the red solid lines are the fitting curves. From
this measurement, the actuation efficiency, (2.1 ± 0.1) × 10−5 N/V, was estimated. Reprinted with
permission from Ref. [1]. Copyright 2015 by American Physical Society

and the same coil-magnet actuator as the main measurement, and measured the
open-loop gain as shown in Fig. 5.7b. From the fitting to the measured date, we
could estimate the voltage-to-force conversion factor of the actuator, because the
others composing the loop, such as the response of the Michelson interferometer,
the mechanical susceptibility of the pendulum (controlled mirror), PD, and servo
filter, had been measured by other experiments. As a result, we experimentally
determined the actuation efficiency to be (2.1 ± 0.1) × 10−5 N/V.

• Relationship between the round-trip length and the pendulum’s displacement
Let us consider the triangular cavity shown in Fig. 5.8, whose round-trip length L r

is given by

L r = LPQ + LQR + LRP, (5.1)

where LPQ is the length of the line segment PQ, LQR is the length of the line
segment QR, and LRP is the length of the line segment RP. The round-trip length
is also given by

L r = R(sin 2A + sin 2B + sin 2C), (5.2)

where circumradius of �ABC is defined as R.

Here, as shown in Fig. 5.9, we consider the displacement of the pendulum (5-mg
flat mirror) given by dx , which induces the change of the beam spot on the curved
mirror given by dθ. After the displacement is denoted by prime (e.g., R → R′),
(first-order) change of the round-trip length, d L r ≡ L ′

r − L r, is given by
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Fig. 5.8 Top view of the triangular cavity. The orthic triangle of �ABC is �PQR. A: a point where
two straight lines to which the flank of the respective flat mirrors is extended are crossed; O: center
of curvature of the curved mirror; P: a point where the straight line AO and the curved mirror are
crossed; B (C): a point where the tangent line at the point P and (each) straight line to which the
flank of the (each respective) flat mirror is extended are crossed; and Q (R): a perpendicular line
from B (C) to AC (AB)

Fig. 5.9 The displacement
of the pendulum. α: incident
angle

d L r = R′[sin 4α + sin(π − 2α − 2dθ) + sin(π − 2α + 2dθ)]
−R[sin 4α + sin(π − 2α) + sin(π − 2α)],

� R′(sin 4α + 2 sin 2α) − R(sin 4α + 2 sin 2α),

= 2d R sin 2α(1 + cos 2α). (5.3)
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By using law of sines given by

R = LBC

2 sin 2α
, (5.4)

and thus d R ≡ R′ − R is given by the change of the length of the line segment
BC, since ∠ A does not change with the displacement of the pendulum.
In order to obtain the expression of d R, followings are respectively obtained by
using law of sines for �C’ST and �BB’S in Fig. 5.10

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1

sin

(
π

2
+ α

) =
a + r

dθ

2

sin

(
π

2
− α − dθ

),

a2

sin

(
π

2
− α

) =
a − r

dθ

2
+ dx

cos θ

sin

(
π

2
+ α − dθ

),

(5.5)

where r ≡ LOP(= 0.2 m) is the radius of curvature of the curved mirror, a is
defined as the length of the line segment BP (CP), a1 is defined as the length of the
line segment B’S, and a2 is defined as the length of the line segment C’S as shown
in Fig. 5.10. Thus, the change of the length of the line segment BC is given by

Fig. 5.10 Detailed figure of
the displacement of the
pendulum. S (T): a point
where the straight line BC
(BC) and the straight line
B’C’ (A’C’) are crossed
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B′C′ − BC = a1 + a2 − 2a,

=
(

a + r
dθ

2

)
cos α

cos (α + dθ)

+
(

a − r
dθ

2
+ dx

cos α

)
cos α

cos (−α + dθ)
− 2a,

�
(

a + r
dθ

2

)
(1 + tan αdθ)

+
(

a − r
dθ

2
+ dx

cos α

)
(1 − tan αdθ) − 2a,

� dx

cos α
. (5.6)

Using this equation, d R is given by

d R = B′C′ − BC

2 sin 2α
,

= dx

2 sin 2α cos α
. (5.7)

The relationship between the round-trip length and the displacement of the pen-
dulum (flat mirror) is given by

d L r = 2d R sin 2α(1 + cos 2α),

= 1 + cos 2α

cos α
dx,

= 2dx cos α. (5.8)

In addition to the displacement of the flat mirror, we consider the displacement of
the curved mirror also given by dx , as shown in Fig. 5.11. The round-trip length
is given by

L r = R[sin 2γ + sin(π − γ) + sin(π − γ)],
= 2R sin γ(1 + cos γ), (5.9)

where we define γ as π/2 − α. By using law of sines again,

R = BC

2 sin γ
. (5.10)

Thus, d R ≡ R′ − R is given by the change of the length of the line segment BC,
which is written by

B′C′ − BC = 2dx tan
γ

2
. (5.11)
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Fig. 5.11 The displacement
of the curved mirror. α:
incident angle to the curved
mirror

Thus, d R is given by

d R = B′C′ − BC

2 sin γ
,

= dx

2 cos2
γ

2

. (5.12)

The relationship between the round-trip length and the displacement of the curved
mirror is given by

d L r = 2d R sin γ(1 + cos γ),

= 2dx sin γ,

= 2dx cos α. (5.13)

From the above, the relationship between the round-trip length and the displace-
ment of the any mirror is given by

d L r = 2dx cos α. (5.14)

From Eq. (5.14), the optomechanical coupling constant defined as ∂ωc/∂x is given
by ωc/L r × 2 cos α. In the limit of α → 0, Eq. (5.14) will be equal to d L r = 2dx ,
which is the case of the linear cavity is considered. Also, in the limit of α → π/2,
d L r becomes zero since the beam does not be reflected on the mirror.
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• Servo system for the cavity length control
The detected signal at the PD3 was demodulated by the DBM, and then sent to
a control servo circuit. The displacement/force fluctuation can be extracted from
error/feedback signals (labeled ver and vfb, respectively) of the servo loop. In the
following, we describe the open-loop transfer function of the triangular cavity
loop.

– The simplified model shown in Fig. 5.12a:
Figure 5.12a shows a simplified model of the triangular cavity servo system.
The displacement of the movable mirror, δx , is converted by the PDH method
into a voltage thorough a displacement-to-voltage conversion factor, H [V/m]
(consists of the transfer function of the optical cavity and the RF photodetector),
producing an error signal, Ver [V]. It is filtered by an electric servo circuit,
F [V/V], producing a feedback signal, Vfb [V]. The feedback signal pushes the
movable mirror χm [m/N] through the coil with an efficiency of A [N/V]. Here,
an open-loop transfer function of the triangular cavity loop, G = H F Aχm, is
obtained. From the error signal, the displacement can be estimated as

(a) (b)

Fig. 5.12 The detailed and simplified block diagram of the triangular cavity servo. a The simplified
block diagram, which is characterized by follow parameters; δx , displacement of the movable mirror;
H , displacement-to-voltage conversion factor; F , servo filter; A, the efficiency of the actuator; χm,
mechanical susceptibility; ver , error signal; vfb, feedback signal; nS, sensor noise; nF, filter noise.
In practice, the PDH signal was extracted by the reflected light and the actuator was attached not to
the movable mirror, but the controlled mirror (see in Chap. 6). b The detailed block diagram, which
is characterized by follow parameters; δF [N], force fluctuation imposed on the 5-mg pendulum;
δl [m], displacement fluctuation of the cavity length; δxpend [m], displacement of the pendulum;
δxc [m], displacement of the controlled mirror; HPDH [W/m], power-to-displacement conversion
factor; HPD [V/W], voltage-to-power conversion factor; Hservo [V/V], servo filter; Hact [N/V] (it is
measured to be (2.1 ± 0.1) × 10−5 N/V by using a simple Michelson interferometer), the efficiency
of the actuator; Hpend [m/N], mechanical susceptibility of the pendulum; Hc [m/N], mechanical
susceptibility of the controlled mirror; Hopt [N/m], the optical spring effect; and nS [m], the sensing
noise. Force fluctuation imposed on the 5-mg pendulum is respectively monitored as force and
displacement power spectrum at the monitor1 and the monitor3. The dashed line shows the optical
spring effect to the controlled mirror, but it is negligible because the controlled mirror is too massive
to be moved by the optical force. Reprinted with permission from Ref. [1]. Copyright 2015 by
American Physical Society

http://dx.doi.org/10.1007/978-4-431-55882-8_6
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δ(er)x = 1 + G

H
ver G → 0−−−−−−→

1

H
ver = δx + nS

H
+ AχmnF. (5.15)

On the other hand, based on the feedback signal, it is given by

δ(fb)x = 1 + G

F H
vfb = δx + nS

H
+ Aχm

G
nF

G → ∞−−−−−−−→Aχmvfb = δx + ns

H
. (5.16)

Based on the viewpoint of the filter noise, the estimation from the feedback
signal is appropriate.
From Eqs. (5.15) and (5.16), the error and the feed-back signal respectively give
us displacement spectrum of the oscillator and force spectrum (δx/χm) imposed
on the oscillator. Force spectrum differs from displacement spectrum in that it
is not be affected by the changeable susceptibility of the pendulum due to the
dynamical back-action of the optical field, as it is independent on the mechanical
dynamics of the pendulum. Displacement spectrum, on the other hand, gives us
the information of the mechanical susceptibility, and thus is tolerant of sens-
ing noise–dummy signal that limits the sensitivity for measurement, which is
independent from mechanical motion—at the resonance.

– The detailed model shown in Fig. 5.12b:
The detailed expression is given by using the parameters written in the caption
of Fig. 5.12b. The monitor1 gives the force fluctuation as

G2 Hpend

Hc Hact
× δF + ns/Hc

1 − G1 − G2
[V], (5.17)

where G1 = Hpend Hopt and G2 = HPDH HPD Hservo Hact Hc, while the monitor3
gives the displacement fluctuation as

(δxpend + ns)HPDH HPD [V], (5.18)

where G2 is supposed to be negligibly small. Note that, in the limit of the
large (electrical) open-loop gain, the feed-back signal given by Eq. (5.17) is
proportional to M/m × δF/Hact, where m is mass of the pendulum and M
is mass of the controlled mirror, while the feed-back signal given by Eq. (5.16)
is only proportional to δF/A. The difference given by a factor of M/m is came
from the fact that the (5-mg) pendulum and the controlled mirror is connected
via the optical spring, in the detailed model.
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5.2.4 Detection System and Vacuum System

In this section, we describe the signal detection system and the vacuum system. The
signal detection system is composed of a modulator, a RF photo detector, and a
demodulator.

• Modulator
We used the Pound-Drever-Hall technique to control the triangular cavity. The
laser beam was phase modulated by an EOM (New Focus Inc., model 4003) on
the injection bench. The EOM is made up of a LiNbO3 crystal and a tank circuit
tuned at 15 MHz. The EOM was driven by a commercial oscillator at 15.000 MHz.
We set the output voltage of the oscillator at 1 V, and the modulation depth was
about 0.1 rad.

• RF photo detector and demodulator
The PDH error signal was extracted at PD3 (HAMAMATSU, G10899-01K), which
detected the intensity changes at the modulation frequency in the reflected light.
The PD3 was followed by an RLC circuit that converted its photocurrent to voltage
with high efficiency, and pre-amplifiers. The Q-value of the circuit was measured
to be about 30. The detected RF signal was demodulated and down-converted to
an AF signal by a Double Balanced Mixer (DBM; Mini Circuit, SBL-1).
The output voltage noise from the demodulator, Vn, represents the sum of the shot
noise and of the detector noise in general [7]. The equivalent photo current noise,
Idet, is defined by

V 2
n = 2eR2

det(IDC + Idet). (5.19)

Here, Rdet is the equivalent resistance for the current-to-voltage conversion, and
IDC is the DC photocurrent. To make the noise of the detection system negligible
compared to the shot-noise level, Idet has to be smaller than IDC. In our case, the shot
noise is not a serious problem because the input laser power was increased such
that the radiation pressure shot noise dominates. On the other hand, an equivalent
resistance is necessary to check the consistency of a calibration. Figure 5.13 shows
the measured demodulated output voltage of PD3 as a function of the DC pho-
tocurrent. The response was fitted by Eq. 5.19. The noise equivalent photocurrents,
Idet, were estimated to be 6.8 mA. The equivalent resistance was estimated to be
583 �. Typical photocurrents operations occurs at 4 mA, which is slightly less than
the noise equivalent photocurrents; however, the photodetector and demodulation
system does not limit the sensitivity.

• Vacuum system
Every component of the system, except for the input optics on the injection bench,
was housed in a vacuum system in order to reduce the effect of sound, air motion,
changes in the refraction index along the optical path, and so on. Figures 5.3
and 5.5 show the vacuum system used in this experiment. Two almost identical
vacuum tanks were used for the intensity stabilization and for the observation
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Fig. 5.13 Characterization
of the RF PD. a Observed
spectra for various input laser
power. b PD3 output noise at
the modulation frequency
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of quantum back-action. The system is relatively compact—their inner diameter
is about 50 cm. Every component was designed to fit inside. The system was
evacuated with a rotary pump and a turbomolecular pump connected to the tank
in which the intensity stabilization signal was extracted. The typical vacuum level
was 10−3 Pa.
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Chapter 6
Experimental Results

Abstract In this chapter, we present the development of the 5-mg suspended mirror
driven by the quantum back-action larger than the thermal fluctuating force. The
origin of quantum back-action is momentum transferred to the mirror by light upon
its reflection. Concerning the coherent light, the photon number fluctuates according
to a Poisson distribution, which caused the radiation pressure fluctuation, termed
radiation pressure shot noise (RPSN). The pendulum mode excited by this force
fluctuation was estimated to be larger than the thermal fluctuating force by a factor
of 1.4 ± 0.2 at 325 Hz. To explain our estimation based on the noise analysis, we
also present the optical, the mechanical, and the optomechanical characterization of
our system. The relevant publication is Phys. Rev. A 92, 033825 (2015) [1].

Keywords Pendulum with the long relaxation · Structure damping · Displacement
and force measurement

6.1 Optical Characterization

From Eqs. (2.79) to (2.81), the optical total (amplitude) decay rate κ and the decay
rate for the fixed mirror (into which the laser is injected) given by κin1 are necessary
for estimating the power spectrum of the quantum and classical back-action. Here,
we present estimations of these parameters.

The experimental setup for the optical characterization is shown in Fig. 5.2.We
measured the transmittance of the triangular cavity using the two beams: (i) the (p-
polarized) beam written as the red (controlling beam) line in Fig. 5.2 was used to
control the cavity length; and (ii) the (p-polarized) beam written as the blue line
(signal beam) in Fig. 5.2 was used to measure the transmittance of the triangular
cavity.

The shifted frequency of the controlling beam was changed within the range from
ΔAOM = 77 MHz−83 MHz by the AOM, while the blue beam was shifted at 80 MHz
by the other AOM. Thus the transmittance of the cavity for the broadband frequency
could be measured using PD6 and PD7. Figure 6.1 shows the result. Fitting to the
Lorentzian, given by a · b2/(b2 + (ΔAOM − c)2), the red line shown in Fig. 6.1 is
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Fig. 6.1 Cavity scan. The optical characterization of our devices was done by sweeping the laser
frequency across the optical resonance while detecting the transmitted light in a photo-detector.
The blue circles are measured values and the vertical blue lines are the statistical errors; the red
line is the fitting line. From this measurement, the total (amplitude) decay rate, κ/2π = (1.181 ±
0.003) × 106 Hz (i.e. finesse, Fp = (1.47 ± 0.03) × 103) was estimated against the p-polarized
light. Reprinted with permission from Ref. [1]. Copyright 2015 by American Physical Society

obtained by a least-squares technique, and the following result is obtained.

a = (1.407 ± 0.003) × 10−2 V, (6.1)

b = (1.181 ± 0.003) × 106 Hz, (6.2)

c = (80.176 ± 0.002) × 106 Hz. (6.3)

Thus,

κ

2π
= (1.181 ± 0.003) × 106 Hz, (6.4)

can be obtained. Because the power reflectance at the resonance for the controlling
beam, given by (2κin1/κ − 1)2, was measured to be 0.22 ± 0.04, the decay rate for
the fixed mirror κin1 is given by

κin1

2π
= (8.7 ± 0.3) × 105 Hz, or (3.1 ± 0.3) × 105 Hz. (6.5)

To obtain the decay for the controlled mirror, the power transmittance for the
signal beam, given by 4κin1κin2/κ

2, was measured to be 0.11±0.01. Thus, the decay
rate for the controlled mirror κin2 is given by

κin2

2π
= (0.44 ± 0.05) × 105 Hz, or (1.2 ± 0.3) × 105 Hz. (6.6)

To distinguish, we used information from the measurement of the optomechanical
coupling constant, see also in Sect. 6.3.
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To obtain the finesse, the free spectral range (FSR) of the cavity νFSR was measured
by followings: (i) the controlling and the signal beams were injected into the cavity;
(ii) the frequency of the controlling (signal) beam was shifted to 82 MHz (80 MHz),
whose difference was used to calibration; and (iii) freely swinging pendulum (∼2
Hz) made many of the detected power peaks, whose interval was used to determine
the FSR, which is given by

νFSR = (3.47 ± 0.07) × 109 Hz. (6.7)

Note that the period at which the velocity of the pendulum is nearly constant was
selected to measure the FSR, such that the FSR is not over estimated. From this, the
cavity round-trip length L , and the finesse F are respectively given by

L = 8.7 ± 0.2 cm, (6.8)

F = (1.47 ± 0.03) × 103. (6.9)

To conclude, κ/2π = (1.181 ± 0.003) × 106 Hz (i.e. finesse, Fp = (1.47 ±
0.03) × 103), (κin1/2π = (8.7 ± 0.3) × 105 Hz, and κin2/2π = (0.44 ± 0.05) ×
105 Hz) were obtained. Note that the finesse can be further increased by using the
s-polarized light, but we used the p-polarized light because the priority was given to
the easiness of cavity control.

6.2 Mechanical Characterization

Here we present the details of the Q-value measurement of the mechanical oscillator.
The mechanical Q-value can be written as Qm = ωm/2γm, using ωm and γm in
Eq. (2.58). Also, from the fluctuation-dissipation theorem, the thermal noise can be
written as

S(2)
FF,th = 4kBTthγmm. (6.10)

Thus, by measuring the Q-value of the pendulum, the (maximum) thermal noise
level can be estimated. Here, T is the temperature of the thermal bath, and kB is
the Boltzmann constant. From Eq. (6.10), it follows that the (suspension) thermal
noise level is proportional to the pendulum loss, γpend, and so the displacement
sensitivity can be improved by trapping the pendulum with the gravitational potential
and diluting the loss. Our oscillator was also trapped by the optical fields. It is able
to increase the effective resonant frequency of the pendulum without changing the
thermal noise level, and the oscillator is effectively cooled down to

Teff = T
ωpend Qeff

ωeff Qpend
, (6.11)

http://dx.doi.org/10.1007/978-4-431-55882-8_2


84 6 Experimental Results

where ωpend and Qpend are respectively the natural resonant frequency and the Q-
value of the pendulum and Qeff is the effective quality factor of the pendulum via
the optical spring. It is worth pointing out that this effective cooling reduces the
thermal noise at the resonant frequency, but it does not change the signal-to-noise
ratio (SNR) with respect to the quantum back-action (detailed discussion is seen in
Chap. 2). This is because the reduction of the thermal noise at the resonant frequency
is caused by the change in the susceptibility, not the reduction in the force fluctuation.
The change in the susceptibility also reduces the quantum back-action, and therefore
SNR remains the same.

In our experiment, we used a thin wire to suspend a mirror in order to dilute the
mechanical loss by the gravitational potential and to increase the pendulum Q-value.
Generally, a thin wire has a low material Q-value because the loss of a material
comes mainly from the surface loss. Ultra-thin wires have been used for discharging
test masses for inertia sensors. There is some literature that reports on measurements
of the Q-value for golden thin wires; one example reports the Q-value of a 10 µm
diameter golden wire at Q = 270 [2]. However, the Q-value of an ultra-thin tungsten
wire, as far as we know, has not yet been reported.

Our experimental setup for the Q-value measurement was almost the same as that
shown in Fig. 5.2, except that the fixed mirror was removed. The incident beam was
aligned such that the beam would hit the movable mirror at its edge, and the mirror
would block the portion of the beam before the beam could be detected by PD4. The
amplitude of the resonant motion can be obtained by demodulating the output of PD4
with the resonant frequencies of the pendulum mode (2.2 Hz) and the torsional mode
(0.23 Hz) because a small oscillation of the mirror creates amplitude modulation of
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Fig. 6.2 Ringdown measurement. The measured damped oscillations for the pendulum and the
yawing motion are shown, respectively. a The ringdown of the pendulum. Amplitude (I-phase)
and phase quadrature (Q-phase) of the oscillation during a free decay were obtained by the optical
shadow sensor. The inset shows the distribution of the measured mechanical quality factor, and
was fitted by the Gaussian distribution. The mechanical Q-value of the pendulum, Qpend = (3.2 ±
1.0) × 105, was measured. Reprinted with permission from Ref. [1]. Copyright 2015 by American
Physical Society. b The ringdown of the yaw mode. Only amplitude quadrature of the oscillation
during a free decay was obtained (blue) by the optical shadow sensor. The mechanical Q-value of
the yaw, Qyaw = 1.9 × 103, was measured
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the beam. The Q-values were measured by exciting the mirror motion and measuring
the decay time of each mode.

Our pendulum had a very high Q-value, since the loss was diluted by the gravi-
tational potential by a factor of 600. Therefore, the pendulum mode had a very long
decay time, and measuring the Q-value without excitations was difficult. In order
to prevent an overestimation of the Q-value (i.e. thermal noise), we also measured
the Q-value of the yaw mode, which had a shorter decay time, to have estimated
the maximum Q-value of the pendulum. In addition to the shorter decay time due
to the no-dilution effect, the yaw mode has tolerance to the mechanical loss of the
clamping mechanism, such as the epoxy due to its mode function, which represents
the mechanical displacement patterns associated with mechanical motion. We can
estimate the Q-value of the yaw mode as being the intrinsic (natural) mechanical
Q-value of the wire. Thus, the measured pendulum Q-value should be smaller than
the maximum Q-value of the pendulum estimated from Qpend,max = Qyaw × 600.

The result of the ring-down measurement is shown in Fig. 6.2. The measured
Q-value for the pendulum mode was Qpend = (3.2 ± 1.0) × 105 (the resonant
frequency was ω/2π = 2.2 Hz). The measured Q-value for the torsion mode was
Qyaw = 1.9×103 (the resonant frequency was ωyaw/2π = 0.23Hz). This means that
the upper limit of the Q-value for the pendulum mode would be Qpend,max = 1.1×106,
which is higher than the Q-value from the direct measurement mentioned above, by
a factor of about 4. Thus, mechanical loss such as the clamping loss possibly reduces
the Q-factor of the pendulum by a factor of 4.

We note that no one knows whether the dissipation is depend (structure damping)
or independent (viscous damping) on the frequency a priori. If viscous damping
model is valid, the ratio of the quantum back-action to the thermal fluctuating force
becomes

S(2)
FF,q

S(2)
FF,th

= Ncircg2

nthκ
× 2Qpend

ωpend
. (6.12)

If structure damping model is valid, the ratio becomes

S(2)
FF,q

S(2)
FF,th

= Ncircg2

nthκ
× 2Qpendω

ω2
pend

, (6.13)

where nth is phonon number, ωm/2Qpend is the mechanical dissipation for the vis-
cous case, and ω2

m/2Qpendω is for the structure case. Because our pendulum can be
trapped by the optical spring, the ratio at the pendulum resonant frequency can be
further increased with increased optical restoring force by a factor of ωeff/ωpend, if
the dissipation of the pendulum is limited by the internal friction, i.e. the structure
damping. To distinguish, we performed noise analysis in Chap. 6, Sect. 4, and the
structure damping model is valid to our measurement.

http://dx.doi.org/10.1007/978-4-431-55882-8_4
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6.3 Optomechanical Characterization

Here, we present the measurement of the optomechanical coupling constant from
the optical spring effect. We measured the effective resonant frequency of the 5-mg
suspended mirror by measuring the open-loop gain given by G2/(1 − G1) as shown
in Fig. 5.12 (open-loop gain is proportional to 1/(ω2

eff − ω2)), in order to estimate
the optomechanical coupling constant, g, of the cavity using Eq. (2.76). Together
with the measured value in Chap. 6, Sect. 1, we can determine the value of the optical
decay rate for the fixed mirror κin1 and the value of the optical decay rate for the
controlled mirror κin2.

The optical restoring force was measured using the same setup as shown in Fig. 5.2,
at a higher pressure (1 × 103 Pa) than that for the main quantum back-action mea-
surement. The beam shown as the red line in Fig. 5.2 at 0.54 mW was injected to
the cavity, and the cavity length was controlled using the same light (PD3). Under
these conditions, the decay rate from the gas damping is γgas/2π � +1 Hz, and the
minimum decay rate from the optical spring was �opt,min/2m � −0.1 Hz. Thus, the
cavity stays sufficiently stable. After closing the cavity length control loop, a small
electrical signal was injected into the loop in order to measure the resonant frequency
of the movable mirror. Figure 6.3 shows the measured open-loop transfer function.

To measure the dependence of the effective resonant frequency on the cavity
(normalized) detuning δ ≡ Δ/κ , the normalized detuning was monitored by

δ =
√

(rd − rTEM)r2
0

rTEM − rdr2
0

, (6.14)

Fig. 6.3 Optical spring response for various detunings of the cavity. The effective mechanical
frequency is measured by monitoring the open-loop function given by G2/(1−G1) at the monitor2
as shown in Fig. 5.12. The inset shows the dependence of the effective resonant frequency (E.
R. F.) on the cavity detuning normalized by the cavity linewidth. From this measurement, the
optomechanical coupling constant, g/2π = (2.8 ± 0.2)ωc /m, was estimated. Reprinted with
permission from Ref. [1]. Copyright 2015 by American Physical Society

http://dx.doi.org/10.1007/978-4-431-55882-8_5
http://dx.doi.org/10.1007/978-4-431-55882-8_2
http://dx.doi.org/10.1007/978-4-431-55882-8_1
http://dx.doi.org/10.1007/978-4-431-55882-8_5
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r0 ≡ 2κin1

κ
− 1, (6.15)

where rd having the unit of V is the measured reflected power at PD3, rTEM having
the unit of V is the reflected power on the zero-detuning (i.e., on the resonance) at
PD3, and r0 is defined as the amplitude reflectance on the zero-detuning. By using the
measured normalized detuning δ and the effective resonant frequency feff , fitting to
the function, given by f 2

eff − f 2
m = D · δ/(1 + δ2)2 was performed by a least-squares

technique, and the following result is obtained.

D ≡ P

(2π)3m

2ωc/(2π)

(κ/(2π))2

(
g

ωc

)2

(r0 + 1) = (7.82 ± 0.09) × 104 Hz2. (6.16)

The inset of Fig. 6.3 as the red line is obtained using D = 7.82×104. From Eq. (6.16),
the incident angle of the laser β is given by

cos2 β = 0.834

r0 + 1
. (6.17)

Because r0 is calculated to be 0.47 or − 0.469, from the value obtained in Chap. 6,
Sect. 1, the decay rate for the fixed mirror κin1 and the decay rate for the controlled
mirror κin2 are respectively determined by

κin1

2π
= (8.7 ± 0.3) × 105 Hz, (6.18)

κin2

2π
= (0.44 ± 0.05) × 105 Hz, (6.19)

and the cos β should be 0.75 ± 0.04. Thus, the optomechanical coupling constant g
is given by

g

2π
≡ 2 cos β

ωc

L
= (2.8 ± 0.2)ωc /m. (6.20)

6.4 Measurement of the Back-Action and Discussions

We measured two types of the back-action signal as shown in Fig. 5.12: the displace-
ment fluctuations from the PDH signal with no feedback gain, i.e. the controlled
1 × 102-g mirror was not electrically trapped such that the displacement signal can
be directly measured; and the force fluctuations from the PDH signal with some gain,
i.e. the controlled mirror was electrically trapped with respect to the cavity length
such that the controlled mirror works as a transducer of the force fluctuation acting
on the 5-mg mirror.

http://dx.doi.org/10.1007/978-4-431-55882-8_1
http://dx.doi.org/10.1007/978-4-431-55882-8_5
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(a)

(b)

Fig. 6.4 A series of measurements of the back-action. a Observed spectra of displacement fluctua-
tion at optical power, Pin = 7.6 mW; the mean value of cavity detuning, Δ = 1.1×κ; and open loop
gain, G2 = 0. Measured displacement spectral density (blue), estimated back-action contribution
(red), and estimated sensing noise with f −1 ( f 1 in the force fluctuation) spectral slope (green) are
shown. Spectral peaks are identified as follows: at around 200 Hz, suspension wire violin mode; at
around 400 Hz, pendulum motion trapped by the optical spring. The left inset shows the measured
data in time-domain, and its vertical axis shows intracavity power (Int. Pow.). The right inset shows
the enlarged view of the left inset, and its vertical axis shows cavity detuning normalized (Norm.
Detu.) by the cavity linewidth. b Observed spectra of force fluctuation (blue input laser power of
4.8 mW; red 1.5 mW; green 0.37 mW). Reprinted with permission from Ref. [1]. Copyright 2015
by American Physical Society

As shown in the inset of Fig. 6.4a, the suspended mirror swung freely in about the
first 30 s, and then cavity length fluctuations were controlled by increasing the gain
of the servo filter. After the control was activated, the gain was gradually reduced
until the electrical trap was lost. At about 70 s of the left inset, the gain became zero,
and the cavity length was only optically controlled through the optical spring effect
(note, it is not the double optical spring effect, and the stability might be generated
by coupling to the optical torsional spring effect) such that the signal of displacement
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fluctuations can be obtained. In Fig. 6.4a as blue dots, the measured (single-sided)
amplitude spectral density (the square root of the power spectrum) of the optically
trapped pendulum motion, with the input power of 7.6 mW and the cavity detuning of
1.1×κ , is shown. The calibrated noise floor level agrees with the estimated classical
back-action induced motion (red) at around 400 Hz, where the pendulum motion is
included. The estimation was performed as follows: (i) fluctuated effective resonant
frequency by the optical spring was calculated using measured detuning as shown
in the insets of Fig. 6.4a; (ii) fluctuated effective mechanical loss was supposed to
be 0.01 Hz; (iii) force fluctuation induced by the classical back-action given by
Eq. (2.81) was estimated using measured classical intensity fluctuations shown in
Fig. 5.6; and (iv) estimated displacement fluctuations shown in Fig. 6.4a (red) is given

by
√

|χeff |2S(2)
FF,cl, where χeff is decided by the estimated effective resonant frequency

and the supposed effective mechanical loss.
The dependence of the measured force fluctuation shown in Fig. 6.4b at 75 and

325 Hz on the input laser power are respectively shown in Fig. 6.5a as blue and cyan
dots. The results are also well fitted to the estimated dependence on the power over
2 mW (pink) and 5 mW (magenta) respectively, while the noise level below 0.8 mW
at 75 Hz is clearly lower than the estimated thermal noise with the viscous model
(gray). To guarantee the stationarity of our measurement, the chi square test was
used to test whether a set of data fits a Rayleigh distribution. As shown in Fig. 6.5b,
e.g., each curve is well close to Rayleigh distributions written by blue lines, since
they exhibited stationary. To distinguish the measured noise below 0.8 mW from the
thermal noise with the viscous model, Fig. 6.5c shows the dependence of the spectral
slope on the input laser power. The result is well fitted to the structure model with f −1

spectral slope plus unknown noise with f 1 slope written as red area. Because the rms
force noise must not diverge, stationary force noise has spectral slope smaller than 0;
therefore roughly 93 % of the measured spectrum with no input-laser at 75 Hz is not
force but sensing noise, with about f 1 spectral slope (e.g., frequency noise has such
a dependence [3]). Thus the structure damping model is valid in our measurements.
We can thus estimate the ratio of the quantum back-action to the thermal fluctuating
force, and then the ratio is estimated to be larger than 1 over 325 Hz with input laser
power of about 5 mW as shown in Fig. 6.5a.

To rule out calibration errors, correlation measurements proposed by Verlot et al.
[4] is suitable; however, let us here focus on the following two sources. As for the
back-action induced by the phase fluctuation (labeled by δφ) of the laser [5], which
is written by S(2)

FF,phase = (S(2)
FF,cl + S(2)

FF,q) × 2Δωeffδφ/(κ2 + Δ2), it is negligible
because the cavity condition is the "bad" condition. In our measurements, roughly
only 0.3 % of the force fluctuation is due to the phase noise. As for the photo-thermal
shot noise given by 2α2(1+σ)2

�ωcTabs Pcircmω2/(ρmCπr2
0 )2 [6, 7], it is maximumly

only 0.2 % of the quantum back-action. Here, α(= 6×10−7/K) is thermal expansion
coefficient, σ(= 0.17) is the Poisson coefficient, Tabs is the absorption coefficient
of the 5-mg mirror, Pcirc(= 6.8 W) is intra-cavity power, ρm(= 2.2 × 103 kg/m3)

is density, C(= 750 J/kg/K) is specific heat capacity, spot size (r0) is designed as
about 100 µm. The absorption coefficient is determined by using the decay rate

http://dx.doi.org/10.1007/978-4-431-55882-8_2
http://dx.doi.org/10.1007/978-4-431-55882-8_5
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(a)

(b) (c)

Fig. 6.5 A series of data analysis for estimating the ratio of the quantum back-action to the thermal
fluctuating force. a Dependence of the measured force amplitude spectral density on the input
laser power. Measured force fluctuation at 325 Hz (blue), measured force fluctuation at 75 Hz
(cyan), theoretical thermal force due to the residual gas damping (yellow), theoretical thermal
force spectrum with the viscous damping model (gray), theoretical thermal force spectrum with
the structure damping model at 325 Hz (orange), and estimated back-action with the measured
B = 94(A = 3.5 × 10−7/

√
Hz) at 75 Hz and B = 48(A = 1.8 × 10−7/

√
Hz) at 325 Hz (pink and

magenta) are shown. Each area includes the 68 % confidence level. The error is due to the systematic
error such as the uncertainty of the quantum efficiency and calibration factor, and the statistic error
in measurement. b Distribution of force amplitude spectral density with input power of 4.8 mW
for two representative frequencies within the measurement band. Each curve is a histogram of the
spectrum at the specified frequency. Each of them is taken from the Fourier transform of 0.4 s of
data; the equivalent noise bandwidth for each curve is 2.4 Hz. c Dependence of the spectrum slopes
at 75 Hz on the input laser power. Measured slopes of the force amplitude spectral density (blue),
theoretical estimation based on the structure damping model (red), and the theoretical estimation
based on the viscous damping model (green) are shown
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Table 6.1 Parameters

Parameter Symbol Unit Measured value Estimated value

Mass of the suspended
mirror

m kg 5.0 × 10−6 –

Mass of the controlled mir-
ror

M kg 9.7 × 10−2 –

Optomechanical coupling g/2π Hz/m (2.8 ± 0.2)ωc (design) 2.84ωc

Total optical (amplitude)
decay rate

κ/2π Hz (1.181 ± 0.003) × 106 –

Optical decay rate (in1) κin1/2π Hz (8.7 ± 0.3) × 106 –

Optical decay rate (in2) κin2/2π Hz (0.44 ± 0.05) × 105 –

Finesse Fp – (1.47 ± 0.03) × 103 –

Round-trip length L m (8.7 ± 0.2) × 10−2 (design) 9 × 10−2

Ffree spectral range νFSR Hz (3.4 ± 0.2) × 109 –

Quality factor Qpend – (3.2 ± 1.0) × 105 <1.1 × 106

Actuator efficiency A N/V (2.1 ± 0.1) × 10−5 –

Slope of the PDH signal HPDH V/m (1.18 ± 0.08) × 1010 –

Signal to noise ratio – – – 1.4 ± 0.2

for the absorption coefficient, κabs, which is supposed as κ − κin − κout, in order to
estimate upper limit of the photo-thermal noise.

For reaching the SQL, the frequency where the quantum back-action and the shot
noise are equal should be optimized by changing input laser power. In our measure-
ments, it becomes about 1 kHz, which is already close to the analyzed frequency of
325 Hz. To reduce the classical laser noise and reach the quantum regime, the use of
interferometer consisting of two optical cavities is necessary to introduce common
mode rejection of the laser noise, and its requirement is about factors of 100. To
reduce the residual gas damping sufficiently, the interferometer has to be set inside
the vacuum chamber of 10−5 Pa, corresponding mechanical decay rate, γgas, is about
3 × 10−8 Hz (corresponding quality factor is about 108). Both improvements are
experimentally feasible within the current technology.

Parameters are summarized in the Table 6.1.
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Chapter 7
The Future

Abstract In this chapter, two possible future investigations are proposed: (i) to
cool the massive 5-mg pendulum down to its ground-state; and (ii) to reach the
standard quantum limit (SQL) for continuous force (displacement) measurement
using the 5-mg pendulum. For these purposes, more higher Q-value pendulum than
that developed in this thesis (suspended by the tungsten wire of 3µm in diameter)
is necessary. Also, the passive cavity-assisted cooling is necessary for increasing the
resonant frequency but not sufficient to cool the pendulum down to its ground-state.
In addition to the passive cooling, the feed-back cooling has to be used. Here, we
present brief explain for our future plans, and the details will be submitted soon.

Keywords Ground-state cooling · SQL · High-Q pendulum using a CNT fiber for
suspension

7.1 Future Improvement

First, as compared with the experiment described above, it is necessary to improve
several parameters: (i) the mechanical quality factor of the pendulum; (ii) the mechan-
ical quality factor of the substrate; and (iii) the finesse.

(i) The Q-value of the pendulum can be improved by: increasing the dilution factor
by using a thinner wire from 3 to 1.5µm; changing the lossy alminium clamp to a
relative lossless steel clamp; and the degree of vacuum can be improved from 10−3

Pa to 10−4 Pa by changing the devices in the vacuum tank to devices with only little
gas release. It is presumed that the Q-value of the pendulum can be increased from
3.2 × 105 to 5 × 106 at least by these improvements because the Q-value without
only clamping loss was estimated to be 1.1 × 106 in Chap. 6, and further dilution
enlarges the value by about 5 times. (Also, the use of the carbon nanotube (CNT) fiber
further increases the Q-value of the pendulum, possibly. Because physical property
of the CNT is suitable for increase the gravitational dilution: (i) the density and the
young modulus of the CNT fiber are smaller then the tungsten, and thus the length
of the wire can be increased without being contaminated by the violin mode; (ii) the
withstand load of the CNT fiber is comparable with the tungsten such that the radius
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of the wire can be decreased without decreasing the mass of the pendulum; and (iii)
the natural quality factor is also comparable with the tungsten wire with the radius
of about a few micro meter [1]).

(ii) We estimated the mechanical quality factor of the substrate to be 105 by
taking the thinness of the mirror into consideration. Although it may be a slight
overestimation, we estimate the Q-value of the substrate to be 106 here. If this is an
overestimate, it may be necessary to change the lossy thin form of the mirror.

(iii) In this thesis, we used p-polarized light because it enabled us to easily control
the optical cavity. Here, we assume that by using s-polarized light and an input
coupler for the input beam better reflectivity is possible. By making these changes,
the finesse would rise to 10000.

Under these assumptions, we propose the followings.

7.2 Towards Ground-State Cooling

To test of the quantum mechanics, the simplest way is to demonstrate the quantum
coherence of the macroscopic objects, which is cooled down to its ground state.
Ground-state cooling has been realized [2–4]; however, it has not been realized on
the macroscopic mass scale.

From Eqs. (1.1) and (6.10), the relationship between the thermal fluctuation force
and the SQL is given by

S(2)
FF,th

S(2)
FF,SQL

= 4kBT γmm

�|χm(ω)|−1 + 2�ωmγmm
ω → ωm−−−−−−−→

kBT

�ωm
. (7.1)

Therefore, the occupation number becomes (about) unity when the thermal noise
and the SQL are equal. (Correctly, the occupation number, 1/(exp(�ωm/kBT ) − 1),
becomes about 0.58, in this case.)

In our case, due to the bad cavity condition, reducing the quantum back-action
is challenging via the passive (cavity-assisted) cooling; however, the thermal exci-
tation can be sufficiently removed. The phonon occupation number, 〈n〉 = 0.22, is
reachable, as shown in Fig. 7.1. To reduce the effect of back-action, one can use the
QND method like the variational readout. The feed-back cooling, on the other hand,
is able to cool the optomechanical oscillator with the bad cavity condition down to
its ground state. In our case, the actuator for feed-back cooling can not be attached
with the suspended small mirror. But it is possible to use the feed-back cooling by
feeding back to the other mirror consisting the cavity, when the both of mirrors is
optically combined by the optical spring [5].

http://dx.doi.org/10.1007/978-4-431-55882-8_1
http://dx.doi.org/10.1007/978-4-431-55882-8_6
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Fig. 7.1 Plan1. The
quantum back-action (blue),
the suspension thermal noise
(red), the mirror thermal
noise (green), the zero-point
fluctuation (cyan), the SQL
for the free mass (dotted
black) and the usual (for the
people belonged to GW
detectors) SQL for the
modified mirror (black line)
are shown. The parameters
are listed in Table 7.1
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Table 7.1 Parameter list of Fig. 7.1

Parameter Value Unit

Finesse 1.0 × 104 –

Cavity decay rate 0.9 MHz

Q-value of the pendulum 5.0 × 106 –

Q-value of the substrate 1.0 × 106 –

Effective resonant frequency 7.4 kHz

Effective Q-value 8.4 –

Input power (driving) 250 mW

Input power (spring) 1500 mW

Normalized detuning (driving) −1.0 –

Normalized detuning (spring) 2.5 –

7.3 Towards Beating the SQL

In order to develop the gravitational-wave astronomy and testing quantum mechanics,
respectively, it is necessary to overcome the SQL. To meet the criteria, we firstly
have to realize the condition of Ωx/ΩF > 2. Under this condition, there is a nonzero
frequency band (in between ΩF and Ωx) in which the classical noise is completely
below the SQL.

Figure 7.2 shows the possible sensitivity (ΩF ∼ 2700,Ωx ∼ 15000). The criteria
can easily be realized, and thereby this is a suitable platform to experimentally study
the QND technique.
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Fig. 7.2 Plan2. The quantum back-action (blue), the shot noise (cyan), the suspension thermal
noise (red), the mirror thermal noise (yellow), the SQL for the free mass (dotted black) and the SQL
for the modified mirror (black line) are shown. ΩF,Ωq, and Ωx are the frequencies at which the
classical force noise (i.e., suspension thermal noise), quantum back-action, and classical sensing
noise (i.e., the mirror thermal noise) intersect the free-mass SQL, respectively. The parameters are
listed in Table 7.2

Table 7.2 Parameter list of Fig. 7.2

Parameter Value Unit

Finesse 4400 –

Cavity decay rate 2.1 MHz

Q-value of the pendulum 5.0 × 106 –

Q-value of the substrate 1.0 × 106 –

Effective resonant frequency 1.7 kHz

Effective Q-value 1700 –

Input power (driving) 10 mW

Input power (spring) 100 mW

Normalized detuning (driving) −0.06 –

Normalized detuning (spring) 3 –
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Chapter 8
Conclusions

This thesis presented the observation of measurement-induced back-action imposed
on the massive 5-mg suspended mirror (pendulum) in classical regime, whose quan-
tum component was estimated to be also larger than thermal fluctuating force at
room temperature. The quantum back-action is one of the most significant issues
to be investigated regarding the interferometric gravitational-wave (GW) detectors
because it will directly limit the sensitivity in next-generation detectors. Although
the quantum back-action is just a noise for weak-force measurements such as GW
detectors, it is one of the key milestones towards testing the quantum mechanics in
macroscopic domain to explore the boundaries between classical and quantumworld,
whichmight solve themeasurement problem at the fundamental level (Chap.3). Until
now, no one had observed the quantum back-action using the massive mechanical
oscillator because it is generally masked by thermal fluctuating force (Chap. 1). To
increase the optomechanical coupling and to reduce the thermal fluctuating force, an
optical cavity with high circulating optical power must consist of a freely suspended
mirror. However, the fundamental instability, called the Siddles-Sigg instability (i.e.,
optical anti-torsional spring effect), prevents their coexistence.

We developed an optical triangular cavity to overcome this limitation. When the
triangular cavity is used, the anti-torsional spring in pitch motion still occurs without
any dependence on the isolation of the pendulum from the thermal bath. On the other
hand, the anti-torsional spring in yaw motion changes the stable positive torsional
spring (Chap. 4). The geometrical advantages of the triangular cavity enables for the
mirror to be isolated from the thermal bath with higher intracavity power than the
stability limit for the liner optical cavity (Chaps. 2 and 6). We succeed in storing
about 50-times higher optical power in our cavity than the instability limit for the
linear cavity, while the dilution factor becomes about 600 (measured improvement
was a factor of 150), and the ratio of the quantum back-action to the thermal fluc-
tuating force was estimated to be 1.4± 0.2 at 325Hz (Chaps. 5 and 6). Our result
opens a new route to investigate ultra-sensitive force measurements andmacroscopic
quantum mechanics (Chaps. 3 and 7). Both of them certainly go toward beating the
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standard quantum limit (SQL), and the only difference is the viewpoint from them.
The former regards it as significant noise, and the latter regards it as a benchmark.
Although reaching the SQL at the resonant point (so-called ground state cooling) is
still challenging via the passive cooling due to the bad cavity condition, it can be
reached at off-resonance by using our method in the future (Chap.7). This condition
is necessary to experimentally study the QND scheme for GW detectors, and to gen-
erate macroscopic Gaussian entanglement states between two macroscopic masses.
It is, therefore, a critical step toward gravitation wave astronomy and of macroscopic
quantum measurements.

http://dx.doi.org/10.1007/978-4-431-55882-8_7


Appendix A
Intensity Stabilization

All’s well that ends well

Here, we describe intensity stabilization using active feed-back control. When the
intensity is stabilized by the feed-back technique, reachable stability is limited over
the shot-noise level (i.e., minimum uncertainty level), because the intensity monitor
is always contaminated with the vacuum fluctuation injected from the pick-off mirror
(and any kind of optical loss, e.g. loss of the quantum efficiency). To mitigate the
contamination named noise penalty, we measured relatively higher optical power
in the in-loop (i.e., signal fed back to the actuator) than that in the out-of-loop (i.e.,
signal for monitoring the actual stability of the laser). Although the achieved stability
via the feed-back control alone did not meet the demand for reaching the shot noise
level, it could be satisfied by the passive stabilization using the interferometer, in
addition to the feed-back control.

To start with, let us consider the simplest case, as shown in Fig. A.1a. Since we
only pay attention to the amplitude fluctuation of the electromagnetic field, only the
amplitude quadrature is considered. The input laser and the vacuum fluctuation en-
tering the unused port of the beam-splitter (BS) can be given by δâ, δb̂1, respectively.
A fluctuation component of a transmitted light from the BS labeled as δ Êt is given by

δ Êt = t1δâ + r1δb̂1, (A.1)

where r1 represents the amplitude reflectivity of the BS and t1 represents the
amplitude transmittivity of the BS. On the other hand, the reflected light δ Êr is
given by

δ Êr = −r1δâ + t1δb̂1. (A.2)

If the transmitted light is used for stabilization, the negative-feed-back system
ideally reduces δ Êt to zero, and then

δâ = −r1

t1
δb̂1 (A.3)
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Fig. A.1 Intensity stabilization system. a Simplest case. b Our case

is obtained. The anti-correlation between δâ and δb̂ increases the noise level in the
out-of-loop (i.e., the reflected field). It is given by

δ Êr = 1

t1
δb̂1. (A.4)

Therefore, the maximum stability in the out-of-loop is 1/t1-times larger than the
vacuum fluctuation. This effect is called the “noise penalty”. In our case, we used
two half-BSs shown in Fig. A.1b. Then, the maximum stability can be calculated as

δ Ê ′
r =

√(
r2

t1

)2

+ t2
2 δb̂1 t1, t2 → 1/

√
2−−−−−−−−−−−→

√
3

2
δb̂1. (A.5)

Therefore, the achievable relative shot-noise level is reduced to about 1.8 dB.

A.1 Intensity Stabilized Laser

One of the main noise sources for the quantum back-action measurement is the
classical back-action force generated by the classical intensity noise of the laser. By
making a high finesse cavity (i.e., high optical power gain inside the cavity), we
can decrease the power of the input beam, such that the requirement of the classical
intensity noise level is reduced in terms of the relative intensity noise level. Note
that the requirement of the noise level in terms of the relative shot-noise level is
unchanged.

In this section, the photodetectors for the feed-back control using the current
actuator (tuning efficiency is shown in Fig. A.2a) and monitoring the achieved sta-
bility, the stabilization servo system, and the achieved stability will be explained.
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Fig. A.2 A series of measurements for intensity stabilization. a Transfer function from the intensity
modulation of the laser to the PD1. b Dark noise of photodetectors. Observed spectra of the voltage
fluctuation of the photodetectors. Both detectors satisfy the requirement (black). c Open-loop trans-
fer function of the intensity stabilization. The unity-gain frequency was approximately at 600 Hz. d
Measured intensity fluctuation. Observed spectra of intensity fluctuation of the input driving beam.
The measured intensity fluctuation (blue), measured intensity fluctuation before the stabilization
(red), and the requirement for achieving the shot-noise level inside the cavity (green) are shown

• Photodetectors for intensity stabilization
The two beam-splitter output fields were focused onto Perkin Elmer C30642
InGaAs photodiodes with an active diameter of 2 mm. The electronics was de-
signed by referring to that specified in Ref. [1]. Since intensity stabilization is
performed by measuring the intensity fluctuation, the dark noise of the detectors
has to be under the required intensity noise level. To confirm this, we measured
the dark noise as shown in Fig. A.2b.

• Servo system
We designed the servo system to have a comparable gain to achieve the goal
sensitivity at about 10−100 Hz. The control signal was fed back to a current
actuator of the laser head. Figure A.2c shows the measured openloop transfer
function of the stabilization loop. The unity gain frequency was about 600 Hz, and
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phase margin was 55◦. The measured stabilization gain by the in-loop signal was
about 30 dB at 100 Hz, which is comparable with the required gain.

• Achieved stability
Figure A.2d shows the measured intensity noise. The actual stability of the
stabilized laser was measured by the error signal of the non-stabilization loop
(out-of-loop). The achieved stability does not satisfy our requirement by the ac-
tive stabilization alone. To meet the demand, the passive common mode rejection
by the interferometer can be used.
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